
Parallel Programming with PCN

Ian Foster Steven Tuecke

Version 2.0: January 15, 1993

A
R

G
O

N
NE

NATIONAL LABORA

TO
R

Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

PCN is a system for developing and executing parallel programs. It comprises

a high-level programming language, tools for developing and debugging programs

in this language, and interfaces to Fortran and C that allow the reuse of existing

code in multilingual parallel programs. Programs developed using PCN are portable

across many di�erent workstations, networks, and parallel computers.

This document provides all the information required to develop parallel programs

with the PCN programming system. It includes both tutorial and reference material.

It also presents the basic concepts that underlie PCN, particularly where these are

likely to be unfamiliar to the reader, and provides pointers to other documentation

on the PCN language, programming techniques, and tools.

PCN is in the public domain. The latest version of both the software and this

manual can be obtained by anonymous ftp from Argonne National Laboratory in

the directory pub/pcn at info.mcs.anl.gov (cf. Appendix A).

This version of this document describes PCN version 2.0, a major revision of the

PCN programming system. It supersedes earlier versions of this report.

Preface

The PCN system is the product of the e�orts of many people at Argonne National

Laboratory, the California Institute of Technology, and the Aerospace Corporation,

including Sharon Brunett, Mani Chandy, Ian Foster, Steve Hammond, Carl Kessel-

man, Tal Lancaster, Dong Lin, Jan Lindhiem, Robert Olson, Steve Taylor, and

Steven Tuecke. The Upshot trace analysis tool was provided by Ewing Lusk. The

expanded BNF syntax for PCN was provided by John Thornley. The two-point

boundary value application was provided by Steve Wright.

This work was supported in part by the National Science Foundation under

Contract NSF CCR-8809615, by the Applied Mathematical Sciences subprogram of

the O�ce of Energy Research, U.S. Department of Energy, under Contract W-31-

109-Eng-38, by the Air Force O�ce for Scienti�c Research under Contract AFOSR-

91-0070, by the O�ce for Naval Research under Contract ONR-N00014-89-J-3201,

and by the Defense Advanced Research Projects Agency under Contract DARPA-

N00014-87-K-0745.

ii

Contents

I A Tutorial Introduction 1

1 Program Composition 1

1.1 Core Programming Notation : 1

1.2 Toolkit : 2

1.3 Cross Reference : 3

2 Getting Started 4

3 An Example Program 4

3.1 Compiling a Program : 5

3.2 Linking a Program : 5

3.3 Running a Program : 6

3.4 The main() Procedure : 7

4 The PCN Language 8

4.1 Concurrent Programming Concepts : : : : : : : : : : : : : : : : : : : 9

4.2 PCN Syntax : 11

4.3 Sequential Composition and Mutable Variables : : : : : : : : : : : : 13

4.4 Parallel Composition and De�nitional Variables : : : : : : : : : : : : 14

4.5 Choice Composition : 17

4.6 De�nitional Variables as Communication Channels : : : : : : : : : : 19

4.7 Specifying Repetitive Actions : 20

4.8 Tuples : 22

4.9 Stream Communication : 26

4.10 Advanced Stream Handling : 29

4.11 Interfacing Parallel and Sequential Code : : : : : : : : : : : : : : : : 33

4.12 Review : 36

5 Programming Examples 36

5.1 List and Tree Manipulation : 37

5.2 Quicksort : 39

5.3 Two-Point Boundary Value Problem : : : : : : : : : : : : : : : : : : 42

6 Modules 45

7 The C Preprocessor 45

8 Integrating Foreign Code 47

8.1 PCN/Foreign Interface : 47

8.2 Compiling with Foreign Code : 48

8.3 Linking with Foreign Code : 49

8.4 Multilingual Programming : 50

iii

8.5 De�ciency of Foreign Interface : 50

9 Higher-Order Programs Using Metacalls 50

10 Process Mapping 52

11 Port Arrays 56

12 Reuse of Parallel Code 57

13 Using Multiple Processors 59

14 Debugging PCN Programs 60

14.1 Syntax Errors : 60

14.2 Logical Errors : 61

14.3 Performance Errors : 61

II Reference Material 63

15 PDB: A Symbolic Debugger for PCN 63

15.1 The PCN to Core PCN Transformation : : : : : : : : : : : : : : : : 63

15.2 Obtaining Transformed Code : 65

15.3 Naming Processes : 66

15.4 Using the Debugger : 66

15.5 Examining the State of a Computation : : : : : : : : : : : : : : : : : 67

15.6 Breakpoints : 69

15.7 Debugger Variables : 69

15.8 Miscellaneous Commands : 71

15.9 Dynamic Loading of .pam Files : 72

15.10Orphan Processes : 72

16 The Gauge Execution Pro�ler 73

16.1 Linking a Program for Pro�ling : 73

16.2 Pro�le Data Collection : 73

16.3 Snapshot Pro�les : 74

16.4 Data Exploration : 74

16.5 The Host Database : 75

16.6 X Resources : 76

17 The Upshot Trace Analyzer 76

17.1 Instrumenting a Program : 77

17.2 Compiling and Linking the Instrumented Program : : : : : : : : : : 77

17.3 Collecting a Log : 78

17.4 Analyzing a Log : 78

iv

18 Standard Libraries 79

18.1 System Utilities : 79

18.2 Standard I/O : 82

18.2.1 Reference : 82

18.2.2 Examples : 85

19 Cross-Compiling 88

20 Intel iPSC/860 Speci�cs 88

21 Intel Touchstone DELTA Speci�cs 89

22 Sequent Symmetry Speci�cs 90

23 Network Speci�cs 90

23.1 Using rsh : 90

23.2 Specifying Nodes on the Command Line : : : : : : : : : : : : : : : : 91

23.3 Using a PCN Startup File : 92

23.4 Starting net-PCN without rsh : 93

23.5 Ending a Computation : 93

23.6 Limitations of net-PCN : 93

24 Further Reading 94

III Advanced Topics 96

25 pcncomp and the PCN linker 96

26 Make�le 96

27 Run-Time System Debugging Options 99

IV Appendices 101

A Obtaining the PCN Software 101

B Supported Machines 102

C Reserved Words 103

D Deprecated and Incompatible Features 104

E Common Questions 105

F PCN Syntax 106

v

Index 111

vi

Part I

A Tutorial Introduction

1 Program Composition

Program Composition Notation (PCN) is both a programming language and a par-

allel programming system. As the name suggests, both the language and the pro-

gramming system center on the notion of program composition.

Most programming languages emphasize techniques used to develop individual

components (blocks, procedures, modules). In PCN, the focus of attention is the

techniques used to put components together (i.e., to compose them). This is illus-

trated in the following �gure, which shows a combining form being used to compose

three programs.

This focus on combining forms is important for several reasons. First, it encour-

ages reuse of parallel code: a single combining form can be used to develop many

di�erent parallel programs. Second, it facilitates reuse of sequential code: parallel

programs can be developed by composing existing modules written in languages such

as Fortran and C. Third, it simpli�es development, debugging, and optimization, by

exposing the basic structure of parallel programs.

It appears likely that a large proportion of all parallel programs can be devel-

oped with a relatively small number of combining forms. However, PCN does not

attempt to enumerate potential combining forms. Instead, it provides a core set of

three primitive composition operators | parallel, sequential, and choice composi-

tion | in a core programming notation. This is a simple, high-level programming

language. More sophisticated combining forms (providing, for example, divide-and-

conquer, self-scheduling, or domain decomposition strategies) can be implemented

as user-de�ned extensions to this core notation. Such extensions are referred to as

templates or user-de�ned composition operators. Program development, both with

the core notation and with templates, is supported by a portable toolkit. These three

components of the PCN system are illustrated in Figure 1.

This tutorial provides a detailed description of the core programming notation

and toolkit, and an introduction to the use of templates in parallel programming.

1.1 Core Programming Notation

The core PCN programming notation is a simple, high-level language that pro-

vides three basic composition operators: parallel, sequential, and choice. The

1

Application−specific
composition operators

Core Programming Notation

Portable Toolkit

Figure 1: PCN System Structure

language provides two types of variable: conventional, or mutable variables, and

single-assignment, or de�nitional variables. Other distinctive features of the lan-

guage include extensive use of recursion, support for both numeric and symbolic

computing, and an interface to sequential languages such as Fortran and C. The

syntax is similar to that of C.

1.2 Toolkit

The PCN toolkit provides support for each stage of the parallel program develop-

ment process. It comprises a compiler, linker, foreign language interface, standard

libraries, process mapping tools, programmable transformation system, symbolic

debugger, execution pro�ler, and trace analyzer. These facilities are all machine

independent and can run on a wide variety of uniprocessors, multiprocessors, and

multicomputers. They are supported by a run-time system that provides basic

machine-dependent facilities.

Compiler The compiler translates PCN programs to a machine-independent, low-

level form (PCN object code). An interface to the C preprocessor allows macros,

conditional compilation constructs, and the like to be used in PCN programs.

Linker and Foreign Language Interface The PCN linker combines PCN ob-

ject code (i.e., PCN compiler output), foreign object code that is called from PCN

(i.e., C or Fortran compiler output), libraries, and the PCN run-time system into

a single executable program. This permits C and Fortran procedures to be inte-

grated seamlessly into PCN programs, and PCN programs to be executed similar to

2

programs written in other languages.

Standard libraries A set of standard libraries provides access to Unix facilities

(e.g., I/O) and other capabilities.

Virtual Topology tools These support process mapping on a variety of virtual

machines, and templates for writing reusable parallel code.

PDB PDB is the PCN symbolic debugger. It includes specialized support for

debugging of concurrent programs.

Gauge Gauge is an execution pro�ler for programs written in PCN and other

languages. It includes run-time system support for collecting and saving pro�les,

and an X windows based graphical tool for interactive exploration of pro�le data.

Upshot Upshot is a trace analysis tool for programs written in PCN and other

languages. It includes run-time system support for collecting and saving traces, and

an X windows based graphical tool for interactive exploration of trace data.

1.3 Cross Reference

The basic constructs of the PCN language are described in the following sections.

� Syntax: x 4.2 and Appendix F.

� Sequential composition: x 4.3.

� Mutable Variables: x 4.3.

� Parallel composition: x 4.4.

� De�nitional Variables: x 4.4.

� Choice composition: x 4.5.

The components of the PCN toolkit are described in the following sections.

� Compiler: x 3.1, x 7.

� Foreign interface and linker: x 8.

� Process mapping tools: x 10.

� Templates: x 12.

� Debugging facilities: x 14.

� PDB: x 15.

3

� Gauge: x 16.

� Upshot: x 17.

� Standard libraries: x 18.

Machine-speci�c aspects of the PCN toolkit are described in xx 19{23. Additional

documentation on the PCN language, toolkit, and applications is cited in x 24.

The host-control program, a utility for managing execution of PCN programs

on networks, is described in a separate document. See x 24 for more information.

2 Getting Started

We assume that PCN is already installed on your computer. (If it is not, read the

documentation provided with the PCN software release.) You will need to know

where PCN is installed. Normally, this will be /usr/local/pcn, but some systems

may place PCN in a di�erent location.

Before you can use PCN, you must tell your Unix environment where to �nd the

PCN software. If you are using the standard Unix C-shell (csh), you add one line

to the end of the �le .cshrc in your home directory. If PCN has been installed in

/usr/local/pcn, this line is

set path = ($path /usr/local/pcn/bin)

The environment variable path tells the Unix shell where to �nd the various PCN

programs (compiler, linker, etc.). This shell command adds the directory containing

the various PCN executables to your shell's search path.

If you use either the Bourne shell (sh) or the Korn shell (ksh) then you will

need to add the following commands to the end of the �le .profile in your home

directory.

PATH=$PATH:/usr/local/pcn/bin

export PATH

You may have to log out and log in again for these changes to take e�ect.

3 An Example Program

We are now ready to compile and run our �rst PCN program. The syntax of PCN

is similar to that of the C programming language in many respects. Hence, it is

appropriate that our �rst program print \Hello world." (the �rst C program in

several well-known texts does just this).

4

Module program1.pcn

main(argc,argv,exit_code)

{; stdio:printf("Hello world.\n", {}, d),

exit_code = 0

}

A PCN program consists of one or more modules. Each module is contained in

a separate �le with a .pcn su�x. Our example program consists of a single module,

program1, contained in a �le program1.pcn. (We'll learn more about modules later.)

This example program has one procedure, main. Its three arguments are the

number of command line arguments (argc), a list of those arguments (argv), and

a variable to be used for a return code (exit code). These are described in more

detail in x 3.4.

This procedure makes what is called an intermodule call: it calls the printf

procedure in the stdio module to print \Hello world ." The stdio module is

distributed with the PCN system; it provides many of the functions of the Unix

\standard I/O" library (x 18.2).

3.1 Compiling a Program

The PCN compiler, pcncomp, is used to compile a PCN module. In general, the

PCN compiler is invoked very much like most Unix based C and Fortran compilers.

Because our program is contained in a �le program1.pcn, we type

pcncomp -c program1.pcn

When compiling program1.pcn, the PCN compiler will produce the �le program1.pam.

The .pam �le contains PCN object code. These .pam �les are analogous to the .o

�les that are produced by most C and Fortran compilers. However, unlike .o object

�les, the .pam �les are completely machine independent: the PCN object code that

is compiled for one machine will work on any other machine without recompilation.

3.2 Linking a Program

Now that we have program1.pam which contains the PCN object code for our ex-

ample program, we must use the PCN linker to combine this .pam �le with libraries

of procedures such as the stdio module and with the PCN run-time system. The

result of running the PCN linker will be an executable program.

The PCN linker will be run by pcncomp when the -c argument is not passed to

pcncomp. This is the same convention as is used in most C and Fortran compilers

to invoke the Unix linker (ld).

To link the example program, myprogram, we type

pcncomp program1.pam -o myprogram -mm program1

5

As with most C and Fortran compilers, the -o speci�es that the name of the

executable produced by the linker will be named myprogram. For the moment,

ignore the -mm program1 ag. This will be descussed in (x 3.4).

The PCN linker is relatively slow. During program development you may wish

to use PCN's dynamic loading capability. This feature allows you to avoid having

to relink a program when PCN �les are changed. It is described in x 15.9.

For information on linking PCN programs that call C or Fortran procedures, see

x 8. For more information on using the PCN compiler and linker in general, see x 25.

3.3 Running a Program

To execute a PCN program, you can just run it like any other program. For example,

to run myprogram you would type the following, where % is the Unix shell prompt:

% myprogram

Hello world.

%

In the subsequent examples, text typed by the user is written in italic and pro-

gram output in roman.

Command line arguments can be passed to PCN programs as they would be to

a C program. For example, the following program prints out the �rst few command

line arguments.

Module program2.pcn

main(argc, argv, exit_code)

{? argc == 3, argv ?= [a1, a2, a3] ->

{; stdio:printf("%s\n%s\n%s\n", {a1, a2, a3}, _),

exit_code = 0

},

default -> {; exit_code = 1 }

}

After this program is compiled as described above, it can be run as follows:

% program2 arg2 \another arg"

program2

arg2

another arg

%

6

The PCN run-time system has a number of run-time con�gurable parameters

that can be controlled by command line arguments. In order to keep these run-time

system's arguments from interfering with the program's arguments, all arguments

up to but not including the �rst -pcn argument will be passed to the program.

All arguments after the -pcn argument will be passed to the run-time system. For

example, suppose you run a PCN program as follows:

my program my arg1 my arg2 -pcn -n 2

This would cause my arg1 and my arg2 to be passed to the PCN program, and -n

and 2 to the run-time system.

A complete list of these run-time system parameters, and a brief description of

their meaning, can be obtained by using the -h argument, for example:

my program -pcn -h

3.4 The main() Procedure

Every program must have an entry point. This is the procedure that is initially

called when a program is executed. In PCN, this entry point is modeled after C.

By default, the following PCN procedure is called when a PCN program is exe-

cuted:

main:main(argc, argv, exit code)

where:

� argc is the argument count (an integer), as in C.

� argv is a list of the arguments. As in C, each argument is a string. A list is

a PCN data type, which is described in x 4.8.

� exit code is unde�ned. The program should set this to an integer exit status

before terminating.

As with C programs, this exit status can be used by a Unix shell script or make�le

to determine whether execution \succeeded" (exit code = 0) or \failed" (exit code

6= 0).

By default, a procedure named main, in a module named main, will be called to

start execution of the program. An alternate main module and/or main procedure

can be speci�ed when linking by using the -mm and -mp ags, respectively. For

example, if you wish p:my main(...) to be the entry point, you might link your

program by running

pcncomp p.pam -o my program -mm p -mp my main

7

The -mm p ag says to use p as the main module, and the -mp my main ag says to

use my main as the main procedure.

When running on multiple PCN nodes, this main procedure is only called on

node 0. It is the responsibility of the PCN program to run procedures on other

nodes. This issue is discussed in section x 10.

Getting started with PCN:

� PCN programs are contained in �les with a .pcn su�x; compila-

tion produces a �le with a .pam su�x. This .pam �le contains the

PCN object code for this program, and is machine independent.

� We compile programs by running pcncomp -c file.pcn.

� We link programs by running pcncomp file.pam -mm file -o

program.

� PCN programs are executed just like other programs.

� The default entry point to a PCN program is the main() proce-

dure in the main module (i.e., main.pcn). The -mm and -mp linker

arguments can be used to change the main module and main pro-

cedure, respectively.

� Command line arguments that come before the -pcn argument

are passed to the PCN program via the argc and argv arguments

to the main procedure. Arguments after the -pcn argument are

passed to the PCN run-time system.

� The last argument to the main procedure should be set to an

integer exit status by the program.

4 The PCN Language

The programming language Program Composition Notation (PCN) is an integral

part of the PCN programming system: it is used to express concurrent algorithms

and to compose code written in sequential languages. Like any programming lan-

guage, PCN has a distinct syntax that must be mastered in order to write programs.

However, the key to understanding PCN is understanding the concurrent program-

ming model that it implements. Before presenting the PCN language, we introduce

this model and the fundamental concurrent programming concepts on which it is

based.

8

4.1 Concurrent Programming Concepts

Parallel programming is often considered \hard." However, experience shows that

programming models that adhere to the following principles can signi�cantly reduce

the complexity of parallel programming.

First-Class Concurrency: Concurrent execution should be a �rst-class citizen in

a programming model, not something appended to a sequential model.

Controlled nondeterminism: The result computed by a procedure should be

fully determined by the procedure's inputs, except when explicitly speci�ed

otherwise by the programmer.

Compositionality: It should be easy to understand both isolated program com-

ponents and larger programs formed by the concurrent composition of these

components.

Mapping independence: The way in which components of a concurrent computa-

tion are mapped to a parallel computer should not change the result computed.

PCN uses four simple ideas to realize a parallel programming model based on

these principles. De�nitional variables provide an abstract, machine-independent

model of both communication and synchronization. Concurrent composition is the

fundamental mechanism used to build up complex programs from simpler compo-

nents. Nondeterministic choice is used to specify nondeterministic actions when

required. Encapsulation of state change allows state change to be integrated into

concurrent computations without compromising deterministic execution.

De�nitional Variables. A single mechanism is provided for the exchange of in-

formation between concurrently executing program components (processes): the

de�nitional variable. A de�nitional variable is initially unde�ned, can be assigned

at most a single value, and subsequently cannot change. A process that requires

the value of a de�nitional variable waits (suspends) until the variable is de�ned. If

a process tries to assign a value to a de�nitional variable that is already de�ned, a

run-time warning will be generated, and the assignment will fail.

De�nitional variables can be used both to communicate values and to synchronize

actions. If two concurrent processes, a producer and a consumer, share a de�nitional

variable, then a value provided by the producer for this variable is automatically

communicated to the consumer. Execution of the consumer is blocked until the

value is provided.

The de�nitional variable has several bene�ts for concurrent programming. First,

it avoids the nondeterminism that is so often associated with concurrency: choices

made within program components on the basis of de�nitional variables cannot

change. This means that components can be understood in isolation, as errors caused

by time-dependent interactions cannot arise. Second, shared de�nitional variables

provide a clearly de�ned and delineated interface between concurrently executing

9

processes: interaction can occur only if processes share variables. Third, the de�ni-

tional variable provides for mapping independence: processes sharing a de�nitional

variable may interact irrespective of their location in a parallel computer.

Concurrent Composition. Complex programs are developed by the concurrent

composition of simpler components. Hence, an application can be viewed as consist-

ing of a (potentially large) number of lightweight execution threads. These execute

concurrently, communicate via de�nitional variables, and block when required data

is unavailable.

It is often desirable that the number of threads be larger than the number of

processors, as this can allow the compiler and run-time system to adopt exible

scheduling strategies that overlap computation and communication, thus masking

latency and improving parallel e�ciency.

Nondeterministic Choice. The use of de�nitional variables as a communication

mechanism avoids errors arising from time-dependent interactions: a choice made on

the basis of a de�nitional variable cannot change. Hence, concurrent computations

are deterministic. This is an important property that greatly simpli�es parallel

programming.

Nevertheless, it is sometimes useful to be able to specify nondeterministic exe-

cution, particularly in reactive applications. Nondeterminism is integrated into the

programming model in a tightly controlled way. A form of guarded command is used

to de�ne the conditions under which a process may perform various actions. Only

if the conditions associated with two or more actions are not mutually exclusive is

execution nondeterministic.

Encapsulation of State Change. The familiar concepts of state change and

sequencing that underlie sequential languages such as Fortran and C are also im-

portant in parallel programming: many algorithms are most e�ciently speci�ed in

these terms. However, state change must be carefully controlled if we are to avoid

introducing unwanted nondeterminism.

The approach adopted in PCN is to insist that state change be encapsulated

within sequential threads. Data structures that may be subject to state change

cannot be shared by concurrently executing program components. This restriction

prevents concurrent updates to state, which in turn avoids the possibility of time-

dependent behavior.

Programming Model Summary. Execution of a parallel program forms a set

of concurrently executing lightweight processes (threads) which communicate and

synchronize by reading and writing shared de�nitional variables. Individual threads

may apply the usual sequential programming techniques of state change and se-

quencing. Execution is deterministic, unless specialized operators are invoked to

make nondeterministic choices.

10

Key concurrent programming concepts:

� De�nitional variables

� Concurrent composition

� Controlled nondeterministic choice

� Encapsulation of state change

4.2 PCN Syntax

The syntax of PCN is modeled on that of the C programming language. In addition,

the C preprocessor is applied to programs, so macros, conditional compilation, and

�le inclusion constructs can be used as in C (x 7). In the following, we make frequent

reference to C when explaining features of PCN. However, these references are for

illustrative purposes only, and a familiarity with C is not required to understand this

material. A complete BNF grammar for the PCN syntax is provided in Appendix F.

Data Types. PCN's three simple data types | character, integer, and double-

precision oating-point number (char, int, and double) | are as in C. One-

dimensional arrays of these data types are also supported. Arrays are indexed from

zero, as in C. There is also a complex data type, the tuple. This is introduced in

x 4.8. A distributed variant of the tuple, the port, is described in x 11.

Constants. PCN uses the same character, integer, double precision oating point,

and string constant conventions as ANSI C. Please consult your favorite ANSI C ref-

erence (e.g. The C Programming Language, Second Edition, Kernighan and Ritchie,

1988, pp. 193-194) for more speci�cs on these conventions.

Strings. Strings are represented as character arrays, as in C. A character array

A representing a string S of length k contains the ASCII representation of the

characters of S in A[0]::A[k � 1] and the null character (\0) in A[k]. A constant

string is denoted by the characters of the string between quotes; for example, "PCN"

is a string consisting of the three characters: P, C, and N (followed by the null

character). The empty string is denoted by "".

Expressions. Arithmetic expressions are as in C, except that the only operators

are modulus, addition, subtraction, multiplication, and division (%, +, �, �, and

=). The length function returns the number of elements in an array or 1 (one) if

applied to a single number or character. User de�ned functions (see below) can also

be called, except in guard expressions. The following are all valid expressions.

(1 + x)%y i * length(g) 29 - x/g

11

Operator precedence and associativity are as in C. The following table summarizes

precedence and associativity rules. Operators on the same line have the same prece-

dence, while rows are in order of decreasing precedence. Parentheses () can be used

to override these default rules.

Operators Associativity

{ (negation of numbers) length right to left

� / % left to right

+ { left to right

Variable Names. Variable names are as in C. A variable name is a character

string formed from the set fa-z,A-Z,0-9, g and starting with a letter or an under-

score (\ "). Case is signi�cant and there is no maximum length. The following are

all valid variable names.

value 2 Last Item x

See Appendix C for a list of reserved words that cannot be used as variable names.

Comments. A comment begins with /* and ends with */, as in C.

Procedures. A procedure de�nition consists of a heading followed by a declara-

tion section followed by a block. The heading is the procedure name and a list of

arguments (i.e., formal parameters), as in C. All arguments are passed by reference,

unlike in C where arguments can be passed by value. The declaration section is

a set of declarations for arguments and local variables. The scope of a variable is

the procedure in which it appears: all variables appearing in a procedure are either

arguments or local variables of the procedure. In particular, there is no notion of a

global variable.

The body of a procedure consists of a composition of blocks. The block is

the basic component from which procedures are constructed. A block is either a

composition, an assignment statement, a de�nition statement, an implication, or a

procedure call. These constructs will be de�ned shortly.

Functions. A function consists of the keyword function followed by a function

de�nition. A function de�nition has the same syntax as a procedure de�nition,

except that it may include calls to the primitive return(r) to specify a return

value, r. The return value of a function must be a de�nitional variable. Functions

cannot be used within guards.

Delimiters The blocks within a composition must be separated by either a comma

(,) or a semicolon (;). In addition, trailing delimiters (i.e., delimiters after the last

block in a composition) are legal.

12

Declarations. A declaration consists of a type (char, int, or double) followed

by one or more variable names, each with an optional su�x to denote an array.

An array su�x for a local variable has the form [size], where size is an integer, a

constant integer expression, or a variable from the procedure's argument list (i.e.,

the array size will be determined at run-time). An array su�x for a variable that

is one of the procedure's arguments has the form []. The following are all valid

declarations.

int a[size]; double b[10], c[], d; char c;

We shall see that declarations are not provided for all variables: the de�nitional

variables used in PCN for communication and synchronization are distinguished by

a lack of declaration.

4.3 Sequential Composition and Mutable Variables

We now explore the PCN language proper. We shall view PCN as providing three

related sets of constructs. First, there are the composition operators | parallel,

sequential, and choice | which encode three fundamental ways of putting program

components together. Second, there are two types of variables: conventional or

mutable variables , and single-assignment or de�nitional variables. Third, there are

specialized language features introduced to support symbolic processing: tuples and

recursion.

We �rst introduce the two components that will be most familiar to many readers:

sequential composition and mutable variables.

The sequential composition operator is used to specify that a set of statements

should be executed sequentially, in the order written in the program. In languages

such as Fortran and C, this is of course the normal mode of execution. However, as

PCN also allows for other sorts of composition, we distinguish it by a special syntax.

A sequential composition has the general form

f ; block

0

, ..., block

k

g

where \;" is the sequential composition operator and block

0

, ..., block

k

are other

blocks.

If no composition operator is used for a block, then the PCN compiler will

interpret this as a sequential block..

A mutable variable in PCN, like a variable in Fortran or C, is declared to have

some type (char, int, or double), initially has some arbitrary (unknown) value,

and can be modi�ed many times during its lifetime, by means of an assignment

statement. An assignment statement is represented as follows,

variable := expression

where variable is a mutable variable or an element of a mutable array.

13

Example. The procedure swap exchanges the values stored at the ith and jth

positions of an integer array. Its three arguments | array, i, and j| are declared

to be an integer array and single integers, respectively. A local variable temp is also

declared. The three assignments are placed in a sequential composition, to ensure

that they execute in the correct order.

The procedure swaptest can be used to execute swap. This procedure declares

a local integer array a[3] and local integer variables i and j; initializes the array

to contain the integers 0, 1, 2, i to contain 1, and j to contain 2; calls a pro-

cedure stdio:printf to display the contents of a; calls swap to exchange the ith

and jth components; and �nally calls stdio:printf again to display the modi�ed

array. Note that since procedure arguments are passed by reference, the array a in

swaptest is the same data structure as array in swap. Note also that in swaptest,

the sequential composition operator ensures that both the assignments to a and the

calls to stdio:printf occur in the correct order.

swap(array,i,j)

int array[], i, j, temp;

{; temp := array[j],

array[j] := array[i],

array[i] := temp

}

swaptest()

int a[3], i, j;

{; a[0] := 0, a[1] := 1, a[2] := 2,

i := 1, j := 2,

stdio:printf("Before: %d %d %d\n",{a[0],a[1],a[2]},_),

swap(a,i,j),

stdio:printf("After: %d %d %d\n",{a[0],a[1],a[2]},_)

}

Role of Sequential Composition. The example illustrates the two primary ap-

plications of sequential composition in PCN: sequencing of updates to mutable vari-

ables and sequencing of I/O operations.

4.4 Parallel Composition and De�nitional Variables

We now consider two related constructs that may be unfamiliar to some readers:

parallel composition and de�nitional variables.

The parallel composition operator speci�es that a set of statements are to be

executed concurrently. A parallel composition has the general form

f jj block

0

, ..., block

k

g

14

where jj is the parallel composition operator and block

0

, ..., block

k

are other blocks.

Execution within a parallel composition is fair: that is, it is guaranteed that exe-

cution of each block will eventually progress (unless that block has terminated).

Execution of a parallel composition terminates when all of its constituent blocks

have terminated.

Concurrent computations initiated within a parallel composition must be able to

exchange data and synchronize their activities. It is important to understand that

this cannot be achieved by using mutable variables (at least not without the intro-

duction of complex locking mechanisms), as the order of read and write operations

in a parallel composition, and hence the result of such operations, is not in general

well de�ned.

Concurrent computations communicate and synchronize by means of de�nitional

or single-assignment variables. We have already come across de�nitional variables

in the introduction to this chapter. Here, we consider them in more detail.

De�nitional variables are represented in the same way as mutable variables, with

one exception: a solitary underscore character (\ ") is used to represent an anony-

mous de�nitional variable. Each occurrence of \ " represents a unique variable.

De�nitional variables are not declared. Any variable occurring in a procedure

that is not explicitly declared in the procedure's declaration section is a de�nitional

variable. De�nitional variables initially have a special unde�ned value. They can be

de�ned once, by means of a de�nition statement, and then cannot be modi�ed. The

de�nition statement is represented as

variable = expression,

where variable is a de�nitional variable. Note that a de�nition of the form x =

y is allowed; this establishes y as an alias for x, so that any prior or subsequent

de�nition for y also applies to x.

Example: Simple Divide and Conquer. The following program implements a

simple divide-and-conquer strategy. As none of the variables in this procedure are

declared, we see that all are de�nitional. Variables prob and soln are arguments;

the rest are local to the procedure. When executed, procedure div and conq im-

mediately executes a parallel composition containing four procedure calls. These

execute concurrently, with execution order constrained only by availability of data.

Variable prob is input and soln output. Procedure split consumes prob and hence

will block until an input value is available. Likewise, the solve procedures block

until l prob and r prob are de�ned by split. Once the two calls to solve produce

values for l soln and r soln, the combine procedure can proceed to produce soln.

15

div_and_conq(prob,soln)

{|| split(prob,l_prob,r_prob),

solve(l_prob,l_soln),

solve(r_prob,r_soln),

combine(l_soln,r_soln,soln)

}

Properties of De�nitional Variables

� Have as initial value a special \unde�ned" value.

� Read operations block until the variable is given a value.

� Are de�ned (\written") by the de�nition operator (\=").

� Once de�ned, cannot be modi�ed.

� Can be shared by procedures in a parallel composition.

� Are not explicitly declared.

� Can take on values of type char, int, double, or tuple.

It is instructive to compare mutable and de�nitional variables, as in the following

table.

De�nitional Mutable

Initial value Special \unde�ned" value Arbitrary value

De�ned by De�nition operator (=) Assignment operator (:=)

Read operation Blocks if unde�ned Always succeeds

Can be written Once Many times

Parallel composition Can share Cannot share

Explicitly declared No Yes

Types tuple, int, double, char int, double, char

Role of Parallel Composition. It is important to understand the distinct roles

of the parallel and sequential composition operators. Parallel composition exposes

opportunities for concurrent execution; sequential composition constrains execution

order so as to sequence I/O operations or assignments to mutable variables. In

general, it is a good idea to expose as much concurrency as possible in an application,

as this provides the compiler and run-time system with maximum exibility when

making scheduling decisions. In particular, they can seek to reduce the cost of

remote data accesses by overlapping computation and communication.

16

4.5 Choice Composition

The third and �nal composition operator that we consider is the choice composition

operator, \?". A choice composition has the general form

f ? guard

0

�> block

0

, ..., guard

k

�> block

k

g

where each guard

i

is a sequence of one or more tests. Valid tests include

a < b, a > b, a <= b, a >= b : arithmetic comparison

a == b, a != b : equality and inequality tests

int(a), char(a), double(a), tuple(a) : type tests

data(a) : synchronization test

? = : tuple match

default : default action

We refer to a single \guard �> block" as an implication.

Choosing between Alternatives. Choice composition provides a mechanism for

choosing between alternatives. In this respect it may be regarded as a parallel if-

then-else or guarded command. Each guard speci�es the conditions that must be

satis�ed for the associated block to be executed. At most one of these blocks will

be executed; which one depends on the result of guard evaluation.

A choice composition is executed as follows. Each guard is evaluated from left

to right. A guard succeeds if all of its tests succeed. If one or more guards succeed,

exactly one of the corresponding blocks is chosen to be executed.

For example, the procedure max executes either z = x or z = y, depending on

the value of x and y, and hence de�nes z to be the larger of x and y.

Module max.pcn: Version 1

max(x,y,z)

{? x >= y -> z = x,

x < y -> z = y

}

Synchronization. Choice composition also provides a synchronization mecha-

nism. A test suspends when evaluated if it requires the value of an unde�ned

de�nitional variable (e.g., x < 3, where x is unde�ned). Otherwise, it succeeds

or fails depending on the value of its arguments.

A guard is evaluated from left to right. If any test suspends, the guard suspends.

If any test fails, the guard fails. If all tests succeed, the guard succeeds.

17

If some guards suspend and all other guards fail, execution of the choice com-

position is suspended until more data is available. If all guards fail, execution of

the choice composition terminates without doing anything. Hence, a call to the

procedure max given above will suspend until both x and y have values, and then

proceed as follows. If both x and y are numbers, the procedure executes either the

�rst or second implication, depending on the values of x and y. If either x or y is

not a number, the procedure terminates without doing anything.

The guard test default succeeds only if all other guards in a choice compo-

sition fail. For example, consider the following alternative formulation of the max

procedure.

Module max.pcn: Version 2

max(x,y,z)

{? x >= y -> z = x,

default -> z = y

}

The two versions of max give the same behavior if x and y are numbers. If either x or

y is not a number, however, the �rst program terminates without executing either

implication, while the second program selects the second implication.

Choice composition rules:

� Evaluate each guard left to right.

� If any test suspends/fails, guard suspends/fails.

� If all tests succeed, guard succeeds.

� If all guards fail, process terminates.

� If no guards succeed and some suspend, process suspends.

� If some guards succeed, execute one implication body.

� If all other tests fail, the default guard test succeeds.

Nondeterministic Choice. Choice composition also provides a mechanism by

which nondeterminism is introduced into PCN programs. Nondeterministic choice

is rarely required in parallel programming. However, it can be important in reactive

applications.

We �rst illustrate the use of nondeterministic choice with a trivial example.

We may rewrite the max procedure given earlier as follows. Note that the two

implications are not mutually exclusive. If x == y, either implication may be taken.

18

This program is nondeterministic in the sense that the action that it performs is

not determined solely by its input, although of course the answer computed is still

determined precisely by the input.

max(x,y,z)

{? x >= y -> z = x,

x <= y -> z = y

}

We now consider a reactive programming example. A procedure switch has

two de�nitional inputs corresponding to the outputs of two sensors in a mechanical

device. If either sensor is activated, the corresponding input variable will be given a

value. The switch procedure is to return a result value if either sensor is activated,

with the value specifying which sensor was activated.

switch(sensor1,sensor2,alarm)

{? data(sensor1) -> alarm = 1,

data(sensor2) -> alarm = 2

}

The guard test data succeeds as soon as its argument has a value. Hence, the output

variable alarm takes value 1 if sensor1 is activated and 2 if sensor2 is activated.

It can take either value if both are activated.

Choice Composition is used for three purposes:

� Choosing between alternatives.

� Synchronization.

� Nondeterministic choice.

4.6 De�nitional Variables as Communication Channels

Consider two procedure calls (processes), a producer and a consumer, that share a

de�nitional variable, x.

producer(x), consumer(x)

The two processes can use the shared variable to communicate data, simply by

performing read and write operations on the variable. For example, assume that the

producer is de�ned to write the variable, as follows.

19

producer(x)

fjj x = "hello" g

The de�nition x = "hello" has the e�ect of communicating the message "hello"

to the consumer. The consumer receives this value simply by reading (examining)

the variable. For example, the following consumer procedure checks to see whether

x has the value hello. Note the use of choice composition and the default guard.

consumer(x)

f? x == "hello" � > stdio:printf("Hello",fg,),

default � > stdio:printf("Huh?",fg,)

g

The shared de�nitional variable x is used here to both communicate a value be-

tween the producer and consumer and to synchronize the actions of these processes.

The shared de�nitional variable can be thought of as a communication channel.

The use of de�nitional variables to specify communication has two advantages.

First, it avoids the distinction that is made in many parallel languages between inter-

processor and intraprocessor communication. This means that no special \packing"

or \unpacking" operations need be performed when communicating. This in turn

facilitates the retargetting of programs to di�erent parallel computers. Second, it

provides great exibility in the communication strategies that can be speci�ed. In

particular, it is possible (as we shall see below) to include variables in data structures

and hence to establish dynamic communication structures.

An apparent di�culty of this formalism is that each de�nitional variable can be

used only to communicate a single value. Fortunately, this is not the case. We show

in x 4.9 below how a single shared variable can be used to communicate a stream of

messages between processes.

4.7 Specifying Repetitive Actions

We have now encountered the constructs used in PCN to express concurrent and

sequential execution, communication between concurrent computations, and state

change within sequential computations. We need one more construct before we can

build large programs, namely, a mechanism for specifying repeated actions.

You are probably familiar with the use of iteration to specify repetition. For

example, in Fortran we may write do i=1,10 to specify 10 repetitions of a loop,

with i ranging from 1 to 10. PCN provides a similar construct, called quanti�cation.

A quanti�cation has the general form

f op i over low .. high :: block g

and speci�es that block should be executed once for each i in the range low..high,

either concurrently (if op = jj) or sequentially (if op = ;).

A quanti�cation is useful when specifying iterative computations involving mu-

table variables (or ports { see x 11). However, the most commonly used iterative

20

construct in PCN is recursion. You will be familiar with recursion if you have used

C (or Prolog, Strand, or Lisp); it tends to be more verbose than iteration, but

has the advantages of allowing richer repetition structures and of working well with

de�nitional variables.

We introduce the use of recursion in PCN with a simple example. Consider

the following procedure, which computes the sum of the elements with indices in the

range from..to in array. This procedure is de�ned in terms of a choice composition

with a parallel composition as the body of the �rst implication and a simple de�nition

statement as the body of the second implication.

Module sumarray.pcn: Version 1

sum_array(from,to,array,sum)

{? from <= to ->

{|| sum_array(from+1,to,array,sumrest),

sum = array[from] + sumrest

},

from > to -> sum = 0

}

The �rst implication states that if from <= to, then the sum of elements from..to

is the value of element array[from] plus the sum of elements from+1..to. The

second implication de�nes the sum to be 0 in the case when from > to.

This procedure uses recursion to repeat the summation over all the elements

of the array. A recursive procedure normally speci�es two alternative courses of

action: continuation and termination. These are combined in a choice composition

with guards specifying associated continuation and termination conditions.

In the example, the continuation action consists of summing array[index] and

sumrest, and making a recursive call to sum array to compute sumrest; these

actions are to be performed if from <= to. The termination action consists of

de�ning sum = 0; this is to be performed if from > to.

Recursive procedure speci�es:

� Termination condition and actions.

� Continuation condition and actions.

Parallel algorithms based on divide-and-conquer techniques frequently make mul-

tiple recursive calls to the same procedure. For example, the following program

implements a divide-and-conquer algorithm for summing the elements of an array.

The task of summing an array is recursively decomposed into the tasks of summing

the left and right subarrays.

21

Module sumarray.pcn: Version 2

sum_array(from,to,array,sum)

{? from < to ->

{|| sum_array(from,(from+to)/2,array,sumleft),

sum_array((from+to)/2+1,to,array,sumright),

sum = sumleft + sumright

},

from == to -> sum = array[from]

}

This example makes apparent the advantages of recursion as a repetition con-

struct in a parallel language: the doubly recursive formulation of sum array exposes

concurrency that is not directly available in an iterative solution.

4.8 Tuples

The programs presented thus far have all dealt with simple data structures: charac-

ters, integers, double precision numbers, and arrays of the same. These data struc-

tures will be familiar to most readers from sequential languages such as Fortran and

C. PCN also provides another sort of data structure called the tuple. Similar data

structures are used in symbolic languages such as Prolog, Strand, or Lisp.

A tuple is a de�nitional data structure used to group together other de�nitional

data structures. A tuple has the general form

f term

0

, ..., term

k�1

g (k � 0)

where term

0

, ..., term

k�1

are de�nitional data structures. The following are all valid

tuples.

fa,bg f"abc"g fg f12,f13,fggg f5.2,"def"g

Note that tuples can be nested: in the fourth tuple on the preceding line, the

tuple fg is nested inside the tuple f13,fgg, which is in turn nested inside the tuple

f12,f13,fggg. Note also that tuples can contain elements of di�erent types.

It is useful to think of tuples as representing trees. A tuple ft

0

, ..., t

k�1

g

represents a tree with a root and k o�spring.

t . . . t kk�

{ , ... , }

0

The tuples listed above can be drawn as follows.

22

{ , } { } { } { , } { , }

a b "abc" 12 { , } 5.2 "def"

13 { }

Building Tuples. Tuples can be written in a program, either as an argument to

a procedure call or as the right-hand side of a de�nition statement. For example,

the block

fjj proc(1,fx,y,fzgg), x = "abc", y = f123g g

invokes a procedure proc with the tuple f"abc",f123g,fzgg as its second argument.

Alternatively, the primitive operation make tuple can be used to build a tuple

of speci�ed size, with each argument a de�nitional variable. For example, the call

make tuple(3,tup)

de�nes tup to be the three-tuple f , , g.

Accessing Tuples. Tuple elements can be referenced in the same way as array

elements: t[i] is element i of a tuple t, for 0 � i < length(t). Hence, the statements

make tuple(3,tup), tup[0] = "abc", tup[1] = f123g, tup[2] = fzg

produce the tuple passed as an argument to proc previously.

The guard test \?=" (match) can be used to decompose a tuple into its con-

stituent components. A match has the general form

tup ?= ft

0

, ..., t

k�1

g,

where the t

i

are either new de�nitional variables or nonvariable terms. A match

succeeds if tup has arity k and each of its arguments matches the corresponding

t

i

, suspends if tup is not de�ned or if one of the matches with a t

i

suspends,

and fails otherwise. A new de�nitional variable t

i

is created with the value of the

corresponding tup argument.

For example, the match

tup ?= f"abc", a, fbgg

succeeds if tup = f"abc",f123g,fzgg, de�ning a = f123g and b = z. It suspends

if tup = fx,f123g,fzgg, as the �rst element of the matching typle is "abc", but the

�rst element of tup is the unde�ned variable x. It fails if tup = f"def",f123g,fzgg,

as the �rst element of the right-hand tuple ("abc") does not match the �rst element

of tup ("def").

23

The match operator does not perform uni�cation. That is, if the term on the

left-hand side of the match contains unde�ned variables, those variables will not be

de�ned to the values that appear in the same location on the right-hand side of the

match. The only de�nitional variables that will be given values during a match are

the new de�nitional variables that appear on the right-hand side of the match.

Variables that appear in right-hand side of match must be new de�nitional vari-

ables. They may not be de�nitional variables that already exist outside of this

implication (i.e., the choice of the choice block that contains this match). The scope

of these new de�nitional variables is the implication in which this match resides

{ they cannot be used outside of this implication. Therefore, to propogate a new

variable that is created during the match to a de�nitional variable that is outside

of the implication in which the match appears, you must assign the new variable

to the outside de�nitional variable from within the body of the implication. This

is illustrated in the following example which uses a match operator to extract the

elements of the tuple, t. Those tuple elements are then used outside the scope of

the implication in which the match appears.

Procedure tuple1

tuple1(t)

{||

{? t ?= {tmp_a, tmp_b} ->

{|| a = tmp_a, b = tmp_b },

default ->

{|| a = 0, b = 0 }

},

r(a,b)

}

Comparing Tuples. The guard tests == and != can be used to compare tuples

as well as strings, numbers, and arrays. An equality test x == y succeeds if x and

y are tuples with the same arity and corresponding subterms are also equal. The

equality test is applied to subterms left to right, depth �rst; if any subterm test fails

or suspends, the overall test also fails or suspends, respectively. The test also fails if

x and y have di�erent arities. An inequality test x != y succeeds if x == y would

fail, fails if x == y would succeed, and suspends otherwise.

List Notation. A list is a two-tuple in which the �rst element represents the

head of the list and the second element the tail. By convention, the zero-tuple (fg)

represents the empty list. For example, the structure f1,f2,f3,fgggg is the list

containing the numbers 1, 2, and 3.

This notation is clumsy, so PCN provides an alternative syntax: a list fh,tg

may be written as [hjt], the empty list as [], a list such as f1,f2,f3,fgggg as

[1, 2, 3], and a list such as f1,f2,f3,tailggg as [1, 2, 3jtail].

24

Example: List Length. The procedure listlen computes the length len of a

list l. For example, a call listlen([1,2,3,4],len) gives the result len = 4. Note

the use of an auxiliary procedure listlen1, which accumulates the length so far in

acc and then returns the �nal result as len.

listlen(l,len)

{|| listlen1(l,0,len)}

listlen1(l,acc,len)

{? l ?= [_|l1] -> listlen1(l1,acc+1,len),

default -> len = acc

}

Example: Building a List. The procedure buildlist builds a list l of length

len. For example, a call buildlist(4,l) gives the result l = [4,3,2,1].

buildlist(len,l)

{? len > 0 ->

{|| l = [len|l1],

buildlist(len-1,l1)

},

default -> l = []

}

Example: List Transducer. The procedure listadd is an example of what

is called a list transducer. It traverses one list and constructs another containing

the result of applying a simple operation to each element in the �rst list: in this

case, the operation is simply to add one to each element. For example, a call

listadd([1,2,3,4],nl) gives the result nl = [2,3,4,5].

listadd(l,nl)

{? l ?= [e|l1] ->

{|| nl = [e+1|nl1],

listadd(l1,nl1)

},

default -> nl = []

}

25

4.9 Stream Communication

We have seen how two or more concurrent computations that share a de�nitional

variable can use that variable to exchange data. The producer of the data simply

de�nes the shared variable to be the data to be communicated (e.g., x = "hello").

The consumer(s) of the data can then use the data in computation.

A shared de�nitional variable would not be very useful if it could be used only to

exchange a single value. Fortunately, there are simple techniques that allow a single

de�nitional variable to be used to communicate many values. The most important

of these is the stream. A stream is a data structure that permits communication of

a sequence of messages from a producer to one or more consumers. A stream acts

like a queue: the producer places elements on one end, and the consumer(s) take

them o� the other.

By convention, stream communication is implemented in PCN in terms of list

structures. Imagine a producer and a consumer sharing a variable x. The producer

de�nes x = [msgjxt] and the consumer matches x ?= [msgjxt]. The e�ect of these

operations is to both communicate msg to the consumer and create a new shared

variable xt that can be used for further communication. This process can be re-

peated arbitrarily often to communicate a stream of messages from the producer to

the consumer. Hence, a stream is a list structure, incrementally constructed by a

producer and deconstructed by a consumer. The empty list ([]) is used to represent

the end of a stream.

Example: Summing Squares. We illustrate the stream communication protocol

in a program that computes the sum of the squares of the integers from 1 to N. We

decompose this problem into two subproblems: constructing a stream of squares

and summing a stream of numbers. The �rst subproblem is solved by the procedure

squares, which recursively produces a stream (i.e., list) of messages N

2

, (N-1)

2

,

..., 1. The second subproblem is solved by the procedures sum and sum1, which

recursively consume this stream (list). The auxiliary procedure sum1 accumulates

the sum so far in sofar and returns the �nal result as sum.

Note the structure of the producer (squares) and consumer (sum1) procedures in

the following program. Both are recursively de�ned. In the producer, the recursive

case incrementally constructs a list sqs of squares by de�ning sqs = [n*njsqs1]

and calling squares to compute sqs1; the termination case de�nes sqs = []. In the

consumer, the recursive case deconstructs a list ints of integers by matching ints

?= [ijints1] and calling sum1 to consume the rest of the messages; the termination

case returns a result.

26

Module sumsquares.pcn

sum_squares(N,sum)

{|| squares(N,sqs), sum(sqs,sum) }

squares(n,sqs) /* Producer: */

{? n > 0 -> {|| sqs = [n*n|sqs1], /* Produce element, */

squares(n-1,sqs1) /* & recurse */

},

n == 0 -> sqs = [] /* Close list. */

}

sum(ints,sum)

{|| sum1(ints,0,sum)}

sum1(ints,sofar,sum) /* Consumer: */

{? ints ?= [i|ints1] -> /* Consume element, */

sum1(ints1,sofar+i,sum), /* & recurse */

ints ?= [] -> sum = sofar /* End of list: stop*/

}

Send/Receive Operations. Some readers may �nd it useful to think of a stream

as an abstract data type on which four operations are de�ned: send, close, recv,

and closed. The �rst two are procedure calls used by a stream producer, and

the latter two are guard tests used by a stream consumer. All take a de�nitional

variable (s) as an argument; send and recv also return a new de�nitional variable

(s1) representing a new stream to be used for the next communication.

send(s,msg,s1): Send msg on stream s, returning as s1 a

new stream for subsequent communication.

close(s): Close stream s.

recv(s,msg,s1): Succeed if a message is pending on stream

s, de�ning msg to be the message and s1 the new

stream.

closed(s): Succeed if stream s has been closed.

These operations can be de�ned by the following macros.

File sendrecv.h

#define send(s,msg,s1) s = [msgjs1]

#define close(s) s = []

#define recv(s,msg,s1) s ?= [msgjs1] /* Guard test */

#define closed(s) s == [] /* Guard test */

27

These de�nitions can be placed in a �le (e.g., sendrecv.h) and included in your

programs, if you prefer to think in terms of send and recv operations instead of

de�nition and match operations on streams. For example, the squares and sum1

procedures presented previously (module sumsquares.pcn) can be rewritten as fol-

lows.

#include "sendrecv.h" /* Include macros */

squares(n,sqs)

{? n > 0 -> {|| send(sqs,n*n,sqs1),

squares(n-1,sqs1)

},

n == 0 -> close(sqs)

}

sum1(ints,sofar,sum)

{? recv(ints,i,ints1) -> sum1(ints1,sofar+i,sum),

closed(ints) -> sum = sofar

}

However, it would be a mistake to think of lists as simply a clumsy notation for

streams, and to restrict your use of streams to the four basic operations provided in

sendrecv.h. The fact that streams are data structures that can be manipulated in

the same way as any other data structure provides enormous exibility.

Example: Stream Filter. We illustrate this exibility with a list transducer

that �lters a stream x, generating a stream y identical to x but with no consec-

utive duplicates. (For example, a call filter([1,1,4,3,5,5,2],y) de�nes y =

[1,4,3,5,2].)

This is not a complex example. However, it illustrates several stream-processing

strategies. Note in particular the use of the match operator to check for two pend-

ing messages (as follows: x?=[msg1,msg2jx1]), the pushing of unused elements back

onto the stream in the recursive calls (e.g., filter([msg2jx1],y)), and the de�ni-

tion of y to be all remaining elements of x in the termination case (y = x).

28

filter(x,y)

{? x ?= [msg1,msg2|x1] ->

{? msg1 == msg2 -> filter([msg2|x1],y),

default -> {|| y = [msg1|y1],

filter([msg2|x1],y1)

}

},

default -> y = x /* x is [msg] or [] */

}

4.10 Advanced Stream Handling

The stream construct provides direct support for one-to-one communication, that is,

communication between a single producer and a single consumer. It also supports

broadcast communication, that is, generation of a single stream to be received by

several consumers. For example, in the composition

fjj producer(s), consumer(s), consumer(s) g,

both consumers receive any values generated by the producer.

Three other communication patterns are also important in practical applications:

many-to-one, one-to-many, and bidirectional. The �rst and second are supported

in PCN by specialized primitives. The third is achieved by means of a specialized

programming technique.

Mergers: Many-to-One Communication. A merger is a PCN system program

that allows the construction of an output stream that is the nondeterministic inter-

leaving of a dynamically varying number of input streams. (The merger is hence

the second source of nondeterminism in PCN, with choice composition being the

�rst.) The only constraint on message order in the output stream is that the order

of messages from individual input streams be preserved. A merger is created with a

procedure call of the form

sys:merger(in,out),

where in is an initial input stream and out is the output stream. An additional

input stream newin is registered with the merger by appending a message of the

form f"merge",newing to any open input stream. An input stream is closed in

the usual way (s = []); the output stream is closed automatically when all input

streams are closed.

The following code fragment illustrates the use of the merger. This organizes

communication between two producer processes and a single consumer, so that the

consumer receives on instream an intermingling of the streams generated by the

two producers.

29

{|| producer(s1), producer(s2)

instream = [{"merge",s1},{"merge",s2}],

sys:merger(instream,outstream),

consumer(outstream)

}

Note that the merger must be able to determine whether each input message is

a f"merge", g term. Hence, messages of the form var or fvar,termg (where var is

an unde�ned variable) should not be sent to a merger: these will cause the merger

to delay until var is given a value.

Distributors: One-to-Many Communication. A distributor is a PCN system

program that routes each message received on its input stream to one of several

output streams. A message of the form fN,Msgg causes the distributor to route Msg

to the Nth output stream. A distributor is created with a call of the form

sys:distribute(N,In),

where N is the number of output streams needed and In is the input stream. Messages

can then be sent to the distributor to register output streams. We register a stream

S as the Nth output stream by sending a message with the form

f"attach",N,S,Doneg,

where Done is a de�nitional variable that is de�ned by the distributor to signal that

the stream S has been registered.

We request the distributor to route a message Msg to the Nth output stream by

sending the following message:

fN, Msgg

We request the distributor to broadcast a message Msg to all output streams by

sending the following message:

f"all", Msgg

It is important to ensure that a stream has been registered before requesting

that a message be routed to that stream. One way of doing this is to register all

streams with the distributor before sending any messages. The following program

achieves this. A call make distributor(in,ss) creates a distributor with ss as

its output streams. (The number of streams in ss is computed by the procedure

sys:list length de�ned in x 18.1.) The input stream in is passed to this distrib-

utor only after all output streams have been registered.

30

make_distributor(in,ss)

{|| sys:list_length(ss,len),

sys:distribute(len,tod),

register(0,ss,tod,in)

}

register(i,ss,tod,in)

{? ss ?= [s|ss1] ->

{|| tod = [{"attach",i,s,done}|tod1],

data(done) -> register(i+1,ss1,tod1,in)

},

ss ?= [] -> tod = in

}

If the input stream to the distributor is closed (In = []), then the distributor

closes all registered output streams and shuts down.

Two-Way Communication. Many parallel algorithms require two-way commu-

nication between concurrently executing processes. In some cases, this can be

achieved by de�ning two communication streams, one for use in each direction.

However, it is also possible to achieve two-way communication with a single de�ni-

tional variable, by using a technique called an incomplete message.

We introduce the incomplete message technique with a simple example. Con-

sider a program input capable of providing boundary conditions for two di�erent

numerical models (e.g., spectral and �nite di�erence). This can be composed with

a procedure implementing a particular numerical model, as follows.

input(xs), model(xs)

The de�nitional variable xs will be used to implement a stream.

The �rst thing that input does is to query the program it is composed with, to

determine that program's input requirements. It does this by sending a message of

the form

f"what input",responseg,

where response is an unde�ned de�nitional variable. The other program (which

of course must be ready to accept such a message) de�nes response to specify the

required input type, allowing the �rst program to read response and generate the

appropriate input data.

Possible de�nitions for input and model are as follows. In this example, the

model procedure speci�es that it expects input in terms of spectral coe�cients by

de�ning response = "spectral". This communication causes the input procedure

to execute spectral input.

31

input(x)

{|| x = [{"what_input",response}|xs],

{? response == "spectral" -> spectral_input(xs),

response == "finite_diff" -> fd_input(xs)

}

}

model(x)

{? x ?= [{"what_input",response}|xs] ->

{|| response = "spectral",

process_input(xs)

}

}

In this example, a single shared variable, xs, has been used to achieve two-way

communication. This is a simple example of a very powerful programming technique

that can be used to establish a wide variety of communication patterns. The key

idea is for one process to de�ne a shared variable to be a tuple containing \holes"

(unde�ned variables). Consumer(s) of this tuple can then �ll in these holes (de�ne

the variables) to communicate additional values to the original producer or even to

other consumers.

We use a more complex example to strengthen understanding of the incomplete

message technique. Consider the problem of exploring a large search space with a

heuristic search method. Assume that it is possible to de�ne multiple searchers,

each capable of exploring part of the search space, and that individual searchers can

improve their e�ciency by exploiting global information about the best-known par-

tial solution. We collect and disseminate global information by de�ning a controller

process to which each searcher periodically sends information about its current best

partial solution. The controller responds to each such message by updating its view

of the best partial solution and returning the best known partial solution.

A PCN implementation of this search method provides each searcher with a

stream to the controller and uses a merger to combine the multiple searcher streams

into a single controller input stream. For example, the following code links two

searchers and a controller.

{|| searcher(s1), searcher(s2),

sys:merger([{"merge",s1},{"merge",s2}],s),

controller(s)

}

The searcher is de�ned as follows. A call to first attempt yields an initial

approximate solution (value), which is passed to the recursively de�ned procedure

search. The search procedure sends the approximate local solution to the con-

troller in a fvalue,responseg tuple, where response is an unde�ned de�nitional

32

variable used to communicate information back from the controller to the searcher.

Depending on the response received from the controller, the searcher either termi-

nates or calls next attempt and repeats the process.

The controller receives a stream of approximate solutions from the workers. It

processes each message by calling improve estimate to improve its own estimate

of the global best solution, and returning either this estimate or the signal "stop"

(indicating that a solution has been found) to the searcher.

searcher(trials)

{|| first_attempt(value),

search(trials,value)

}

search(trials,value)

{|| trials = [{value,response}|trials1],

{? response == "stop" -> trials1 = [],

default ->

{|| next_attempt(value,response,next_value),

search(trials1,next_value)

}

}

}

controller(trials,bound)

trials ?= [{value,response}|trials1] ->

{|| improve_estimate(bound,value,newbound,result),

{? result == "solution" -> response = "stop",

default -> response = newbound

},

controller(trials1,newbound)

}

Specialized Communication Structures:

� Many-to-one: merger.

� One-to-many: distributor.

� Bidirectional: incomplete message.

4.11 Interfacing Parallel and Sequential Code

The two worlds of parallel and sequential, de�nitional and mutable, have so far been

regarded as distinct. In practice, the two worlds must interact whenever a sequential

33

program component is integrated into a concurrent program. Such interactions

are governed by three simple rules. The �rst restricts the way in which mutable

variables can be used within parallel blocks, while the second and third specify

copying operations performed by the PCN compiler when data is transferred between

the de�nitional and mutable worlds by de�ning a de�nition in terms of a mutable,

or vice versa. This copying avoids aliasing between state maintained in di�erent

sequential threads, and hence ensures that state change within individual threads

does not lead to time-dependent interactions with concurrently executing processes.

Mutable Variables and Parallel Composition. Mutable variables may occur

in parallel compositions, but only if their usage obeys the following rule.

Rule 1: A mutable variable can be shared by blocks in a parallel com-

position only if no block modi�es the variable.

This restriction prevents errors resulting from time-dependent, nondeterministic

updates to a mutable variable (i.e., race conditions). The restriction is not currently

enforced by the compiler, and so the programmer must be careful to ensure that all

programs are valid.

Note that there is no similar restriction on the use of de�nitional variables within

sequential blocks.

Mutable ! De�nition. The following rule states what happens when a de�ni-

tional variable is de�ned in terms of a mutable variable.

Rule 2: When a mutable occurs on the right-hand side of a de�nition

statement, the current value of the mutable is snapshotted (copied), and

the de�nition then proceeds as if a de�nitional value were involved.

For example, in the following code, c = 5 and d = 4 when computation is com-

plete.

proc1(c,d)

int a;

{; a := 3,

c = 2 + a,

a := 4

d = a

}

Snapshotting a mutable array creates a de�nitional copy of the array that can be

read but not modi�ed. For example, in the following, c is de�ned to be a copy of the

34

mutable array a. Subsequent changes to a do not a�ect the value of the de�nitional

array c.

proc2(c,d)

int a[5];

{; initialize(a),

c = a,

...

}

De�nition ! Mutable. The following rule states what happens when a mutable

variable is assigned an expression involving a de�nitional variable.

Rule 3: When a de�nitional variable occurs on the right-hand side of

an assignment, the assignment suspends until the variable has a value

and then proceeds.

For example, if c is a de�nition with value 3 in the following program, then a

has value 5 after the assignment.

proc3(a,c)

int a, b;

{; b := 2

a := b + c

}

Note that if the right-hand side of the assignment is not an expression, then the

assignment will copy the de�nitional value into the mutable variable. For example,

in the following code fragment, the de�nitional value c is copied into the mutable

array a. The array a can be modi�ed subsequently without a�ecting c.

int a[5];

a := c

Example. The following example illustrates the use of copying to avoid aliasing.

The procedure proc has two de�nitional arguments: it produces as output the result

of applying a transformation solve to input. It calls the procedure solve to e�ect

the transformation; this is de�ned to operate on mutable data structures. Hence,

proc declares a local mutable array temp, assigns temp the value input, applies

solve to temp, and then de�nes output to be the updated value of temp. Two

copying operations take place, from input to temp and from temp to output.

35

proc(input,output)

double temp[SIZE];

{; temp := input,

solve(temp),

output = temp

}

4.12 Review

PCN encourages a compositional approach to parallel programming, in which com-

plex programs are built up by the parallel composition of simpler components. Pro-

gram components composed in parallel execute concurrently. They communicate

by reading and writing de�nitional (single-assignment) variables. The use of de�ni-

tional variables avoids time-dependent interactions, allowing individual components

to be understood in isolation. In addition, read and write operations on de�nitional

variables can be implemented e�ciently on both shared-memory and distributed-

memory parallel computers. Hence, parallel composition and de�nitional variables

address three of the concerns listed at the beginning of this chapter: concurrency,

compositionality, and mapping independence.

The choice operator is used to encode conditional execution and synchronization.

It also provides a means of introducing controlled nondeterminism into programs.

(The merger is the other mechanism used to specify nondeterministic actions in PCN

programs.)

The sequential composition operator and mutable variables together provide a

mechanism for integrating state change into de�nitional programs. This state change

may be performed in PCN or in lower-level sequential languages.

A �nal aspect of PCN which may be unfamiliar to some readers is its use of

tuples and recursion. These constructs provide support for symbolic processing.

They augment arrays, iteration, and other language constructs provided by lan-

guages such as Fortran and C for numeric processing. An increasing number of

applications have both numeric (regular, oating-point) and symbolic (irregular,

rule-based) components. PCN's symbolic processing capabilities are intended to

support such mixed-mode applications.

5 Programming Examples

We present PCN programs that solve programming problems concerned with list

and tree manipulation, sorting, and a two-point boundary value problem.

36

5.1 List and Tree Manipulation

Membership in a List. Develop a program member with arguments e, l, and r,

where l is a list, and at termination of execution of the program, r = TRUE if and

only if e appears in list l. Assume that FALSE = 0 and TRUE = 1, to be consistent

with C.

#define TRUE 1

#define FALSE 0

member(e,l,r)

{? l ?= [v|l1], v == e -> r = TRUE,

l ?= [v|l1], v != e -> member(e,l1,r),

l ?= [] -> r = FALSE

}

Membership in a List (Mutables). Now consider a program with the same

speci�cation, except that e and r are now mutables. The mutable r is to be set to

TRUE or FALSE; e (and of course l) should not be changed.

#define TRUE 1

#define FALSE 0

member(e,l,r)

int e, r;

{? l ?= [v|l1], v == e -> r := TRUE,

l ?= [v|l1], v != e -> member(e,l1,r),

l ?= [] -> r := FALSE

}

The only di�erence between the two programs is the addition of the type declarations

and the substitution of the := operator.

Reversal of a List. Develop a program reverse with arguments x, b, and e,

which de�nes b to be the list of elements in x, in reverse order, concatenated with

e. For example, if x = ["A","B"] and e = ["C","D"], then b is to be de�ned as

["B","A","C","D"]. (The name b stands for the beginning of the reversed list, and

e stands for the end of the reversed list.)

37

reverse(x,b,e)

{? x ?= [v|xs] -> reverse(xs,b,[v|e]),

x ?= [] -> b = e

}

This program can be used to simply reverse a list by calling it with e = []. For

example, a call reverse([1,2,3],b,[]) yields b = [3,2,1].

The reverse procedure illustrates an important programming technique called

the di�erence list. A call to reverse constructs a list b consisting of the values

computed by reverse followed by the values provided as e. This allows lists con-

structed in several computations to be concatenated without further computation.

For example, the calls

reverse([1,2,3],b,e), reverse([4,5,6],e,[])

construct the list [3,2,1,6,5,4].

Height of a Binary Tree. Develop a program height with arguments t and z,

where t is a binary tree, and z is to be de�ned to be the height of the tree. A tree t

is either the empty tuple, fg, or a 3-tuple fleft, val, right g, where left and

right are the left and right subtrees of t.

height(t,z)

{? t ?= {left, _, right} ->

{|| height(left, l), height(right, r),

{? l >= r -> z = l+1,

l < r -> z = r+1

}

},

t ?= {} -> z = 0

}

The program can be read as follows. The height of a nonempty tree is 1 plus the

larger of the heights of the left and right subtrees. (The heights of the subtrees are

determined by two recursive calls to height.) The height of an empty tree is 0.

Preorder Traversal of a Binary Tree. Develop a program preorder with ar-

guments t, b, and e, where t is a binary tree, and b and e are lists. Binary trees are

represented using tuples, as in the last example. List b is to be the list consisting of

the val of all nodes of the tree in preorder, concatenated with list e. (A traversal of

a tree in preorder visits the root, then the left subtree, and �nally the right subtree.)

38

preorder(t,b,e)

{? t ?= {left,val,right} ->

{|| b = [val|m1],

preorder(left,m1,m2),

preorder(right,m2,e)

},

t ?= {} -> b = e

}

The program uses the di�erence list technique introduced previously in the reverse

example: each call to preorder constructs a list b consisting of the elements in its

subtree t followed by the supplied list e.

5.2 Quicksort

We present an implementation of the well-known quicksort algorithm, qsortD, which

uses lists of de�nitional variables; later, we provide an in-place quicksort, qsortM,

that uses mutable arrays. It is instructive to compare the two programs: the de�-

nitional program is signi�cantly shorter and easier to understand than the mutable

program. However, it makes less e�cient use of memory.

De�nitional Quicksort. Program qsortD has two input arguments, x and e, and

one output argument, b: x and e are de�nitional variables that are not de�ned by

the program, and b is a de�nitional variable that is de�ned by the program. All three

are lists of numbers. The output b is speci�ed to be the list x sorted in increasing

order, concatenated with list e. For example if e = [5, 4] and x = [2, 1], then

b = [1, 2, 5, 4]. If e is the empty list, then b is x sorted in increasing order.

39

qsortD(x,b,e)

{? x ?= [mid|xs] ->

{|| part(mid,xs,left,right),

qsortD(left,b,[mid|m]),

qsortD(right,m,e)

},

x ?= [] -> b = e

}

part(mid,xs,left,right)

{? xs ?= [hd|tl] ->

{? hd <= mid ->

{|| left = [hd|ls], part(mid,tl,ls,right) },

hd > mid ->

{|| right = [hd|rs], part(mid,tl,left,rs) }

},

xs ?= [] -> {|| left = [], right = [] }

}

The qsortD procedure operates as follows. If x is nonempty, let mid be its �rst

element and let xs be the remaining elements. The call part(mid,xs,left,right)

de�nes left to be the list of values of xs that are at most mid, and right to be

the list of values of xs that exceed mid. Call qsortD(right,m,e), thus de�ning m

to be the sorted list of right appended to e. Call qsortD(left,b,[mid|m]), thus

de�ning b to be the sorted list of left followed by mid followed by m. Otherwise, if

x is the empty list, then de�ne b to be e.

The part procedure operates as follows. If xs is not empty, then let hd and tl be

the head and tail (respectively) of xs. If hd is at most mid, de�ne ls and right by

part(mid,tl,ls,right), and de�ne left as hd followed by ls. If hd exceeds mid,

de�ne left and rs by part(mid,tl,left,rs), and de�ne right as hd followed by

rs. If xs is the empty list, de�ne left and right to be empty lists.

In-Place Quicksort. Program qsortM has two input parameters, l, and r, both

of which are de�nitional variables, and one input-output parameter C, which is a

one-dimensional mutable array of integers. Let C

init

be the initial value of C, and

let C

final

be the value of C on termination of the program. Then C

final

is to be

a permutation of C

init

, where C

final

[l, : : :, r] is C

init

[l, : : :, r] in increasing

order, and the other elements of C are to remain unchanged. (If l � r then C

final

is C

init

.)

40

qsortM(l,r,C)

int C[];

{? l < r ->

{; split(l,r,C,mid),

qsortM(l,mid-1,C),

qsortM(mid+1,r,C)

}

}

split(l,r,C,mid)

int C[], left, right, temp;

{? l <= r ->

{; left := l+1, right := r, s = C[l],

part1(l,r,C,s,left,right), temp := l,

swap(temp,right,C), mid = right

}

}

part1(l,r,C,s,left,right)

int C[], left, right;

{? left <= right ->

{; left_rightwards(r,C,s,left),

right_leftwards(l+1,C,s,right),

{? left <= right ->

{; swap(left,right,C),

left := left + 1,

right := right - 1

}

},

part1(l,r,C,s,left,right)

}

}

left_rightwards(r,C,s,left)

int C[], left;

{? left <= r, C[left] <= s ->

{; left := left+1, left_rightwards(r,C,s,left) }

}

right_leftwards(l,C,s,right)

int C[], right;

{? right >= l, C[right] > s ->

{; right := right-1, right_leftwards(l,C,s,right) }

}

swap(i,j,C)

int i, j, C[], temp;

{; temp := C[i], C[i] := C[j], C[j] := temp }

41

Execution of split(l,r,C,mid) permutes C and assigns a value to mid such that

l � mid � r, and such that all elements in C[l, : : :, mid-1] are at most C[mid],

and all elements in C[mid+1, : : :, r] exceed C[mid].

The program qsortM operates as follows. If l � r, then qsortM takes no action,

leaving C unchanged. If l < r, then split is called, and after split terminates

execution, C[l, : : :, mid-1] and C[mid+1, : : :, r] are sorted independently.

The split program operators as follows. If l > r, then split terminates exe-

cution without taking any action. If l � r, then program split(l,r,C,mid) calls

part1(l,r,C,s,left,right) after setting left = l+1, right = r and s = C[l];

program part leaves s unchanged, modi�es left and right, and permutes elements

of C[l+1, : : :, r] so that, at termination of part1, left = right +1, and all ele-

ments in C[l+1, : : :, right] are at most s, and all elements in C[right+1, : : :,

r] exceed s.

After termination of part1, program swap is called to exchange C[l] (which

is s) with C[right]. After the swap, all elements in C[l, : : :, right-1] are at

most s, and C[right] = s, and all elements in C[right+1, : : :, r] exceed s. The

program terminates after mid is de�ned as right.

Program part1 moves left rightwards and right leftwards until they cross (i.e.,

left = right+1).

5.3 Two-Point Boundary Value Problem

Our last programming example is a solution to a more substantial numerical prob-

lem. The problem that we consider arises when solving the linear boundary value

problem in ordinary di�erential equations, namely,

y

0

= M(t)y + q(t); t 2 [a; b]; y 2 R

n

;

such that B

a

y(a) +B

b

y(b) = d:

In most algorithms designed to solve this problem, the most computationally inten-

sive task is the construction and solution of a linear algebraic system of equations,

which typically has the form

2

6

6

6

6

6

6

4

B

a

B

b

A

1

C

1

A

2

C

2

.

.

.

.

.

.

A

k

C

k

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

y

1

y

2

y

3

.

.

.

y

k+1

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

d

f

1

f

2

.

.

.

f

k

3

7

7

7

7

7

7

5

:

Here each of the blocks has dimension n � n, and k is often substantially larger

than n. Construction of this system is trivially parallelizable. A more substantial

challenge is to solve it in a parallel computing environment. It is important that the

solution process be stable in a numerical sense; otherwise, the computed answer may

be hopelessly inaccurate. Simple algorithms such as block elimination are therefore

not appropriate. The algorithm described here uses a \structured orthogonal factor-

ization" technique, in which orthogonal transformations are used to compress each

42

two successive block rows of the linear system into a single block row. This produces

a \reduced" system that has the same structure as the original system, but is half

the size. The compression process can be applied recursively until a small system

"

B

a

B

b

~

A

1

~

C

1

"

y

1

y

k+1

#

=

"

d

~

f

1

#

remains.

The PCN code that implements this algorithm creates a set of k processes con-

nected in a tree structure. A wave of computation starts at the k/2 leaves of the tree

and proceeds up the tree to the root. The leaves perform the initial compression

described above, while at the higher levels of the tree the compression is applied

recursively, and at the root the small system above is solved. Finally, computation

propagates down the tree to recover the remaining elements of the solution vector.

Input to the PCN code is provided at each leaf i (0 � i < k=2) as two n � n

blocks (A

i

and C

i

) and one n vector (f

i

), and at the root as two n � n blocks (B

a

and B

b

) and one n vector (d).

The PCN code consists of two main parts. The �rst part is the code that creates

the process tree. This creates a root process and calls a doubly recursive tree

procedure to create k=2 leaf processes and k=2�1 nonleaf processes. Shared de�-

nitional variables (strm, left, right) establish communication channels between

the nodes in the tree.

solve(k,t0,t1)

{|| root(strm),

tree(strm,{t0,t1},1,k/2)

}

tree(strm,as,from,to)

{? from == to -> leaf(from*2,strm,as),

from < to ->

{|| mid=from+(to-from)/2,

nonleaf(left,right,strm),

tree(left,as,from,mid),

tree(right,as,mid+1,to)

}

}

The second part of the program de�nes the actions performed by the leaf,

nonleaf, and root processes. We consider the leaf process �rst. A single leaf

process initializes two sets of blocks | a1, c1, f1) and (a2, c2, f2 | and then

calls compress to produce a, c, f. It sends a message to its parent containing the

computed values and slots for return values (ybot, ytop) which will be computed

by its parent. The recover procedure delays until values are received for ybot and

ytop, and then computes the solution, y.

43

leaf(id,parent,as)

double a1[MM],c1[MM],f1[M],a2[MM],c2[MM],f2[M],

a[MM],c[MM],f[M],y[M],r[MM];

{? as ?= {t0,t1} ->

{; init_(id-1,a1,c1,f1,t0,t1),

init_(id,a2,c2,f2,t0,t1),

compress_(a1,c1,f1,a2,c2,f2,a,c,f,r),

parent={a,c,f,ybot,ytop},

recover(a1,c1,f1,r,ybot,ytop,y)

}

}

The nonleaf procedure receives messages from left and right o�spring. It calls

compress to compress the a1, c1, f1 and a2, c2, f2 received from its o�spring,

producing a,c,f. These newly compressed values are communicated to the parent

in the process tree. Once values for ytop and ybot are produced by the parent, the

recover operation can proceed, producing ymid; values are then returned to the left

and right o�spring by the four de�nition statements.

nonleaf(left,right,parent)

double ymid[M],a[MM],c[MM],f[M],r[MM];

{? left ?= {a1,c1,f1,ybot1,ytop1},

right ?= {a2,c2,f2,ybot2,ytop2} ->

{; compress_(a1,c1,f1,a2,c2,f2,a,c,f,r),

parent={a,c,f,ybot,ytop},

recover_(a1,c1,f1,r,ybot,ytop,ymid),

ybot1=ymid, ytop1=ytop,

ybot2=ybot, ytop2=ymid

}

}

The root process receives a single message containing the completely reduced

blocks. It calls comp root to perform the �nal computation, producing ybot1 and

ytop1 which it returns to its o�spring with two de�nitions.

44

root(child)

double ybot1[M],ytop1[M],ba[MM],bb[MM],brhs[M];

{? child ?= {a,c,f,ybot,ytop} ->

{; init_root_(m,ba,bb,brhs),

comp_root_(a,c,f,ba,bb,brhs,ybot1,ytop1),

ytop=ytop1, ybot=ybot1

}

}

6 Modules

Recall from x 3 that a PCN program consists of one or more modules. Each module

is contained in a separate �le with a .pcn su�x. A module contains zero or more

procedures.

Procedures in one module can invoke procedures in other modules by means of

intermodule calls. An intermodule call has the following general form.

module:procedure name(arg

0

, ..., arg

n

)

A procedure can be invoked by an intermodule call only if it has been exported

by the module in which it is de�ned. By default, all procedures in a module are

exported. However, you can specify that only a subset of the procedures in a module

are to be exported, by providing one or more -exports directives. An exports

directive has the general form

-exports(proc

0

, ..., proc

k

)

and speci�es that the module in which it appears exports procedures named by the

strings proc

0

, ..., proc

k

. For example, the directive -exports("procA","procB")

names procA and procB as exported.

In general, it is good practice to provide an -exports statement in each module,

and to export only those procedures that are called from other modules. This allows

the compiler to generate more compact object code.

7 The C Preprocessor

The PCN compiler applies the C language preprocessor (cpp) to each PCN module

before compiling it. Hence, PCN programs can make use of cpp's capabilities, such

as include �les, macros, and conditional compilation. All three of these capabilities

are used in the following example program.

45

Module cpp ex.pcn

-exports("go")

#include <pcn_stdio.h>

#define ARRAY_SIZE 10

go()

double a[ARRAY_SIZE];

{;

#ifdef OLD_VERSION

stdio:printf("Old version\n",{},_),

#else

stdio:printf("New version\n",{},_),

#endif

do_something_with_array(a)

}

When the PCN compiler applies cpp to a PCN program, it automatically de�nes

the symbol \PCN" and a symbol that represents the target architecture for which

you are compiling (i.e., sun4, rs6000, next040, ipsc860, etc). These symbols can

be used for conditional compilation. For example, the following header �le can be

used in both PCN and C components of a program, hence ensuring that the symbol

ARRAY SIZE is de�ned in the same manner everywhere. The #ifndef means that

the declaration of my c procedure() is used only in the C compilation.

File cpp ex.h

#define ARRAY_SIZE 10

#ifndef PCN

#ifdef sun4

#include "sun4_only_hdr.h"

#endif /* sun4 */

extern void my_c_procedure();

#endif /* PCN */

In this example, ARRAY SIZE will be de�ned to be the value 10 in both PCN

and C programs that include this header �le. Also, if the C program is compiled

using pcncomp (i.e., pcncomp -c file.c), the procedure my c procedure() will be

declared in the C program, and the header �le sun4 only hdr.h will be included in

the C program when compiling for a sun4 architecture.

We can pass additional arguments to cpp when compiling PCN programs. For

example, suppose we wish OLD VERSION to be de�ned when compiling the program

cpp ex.pcn shown above. This can be achieved by using the -D ag when compiling

with pcncomp as follows:

46

pcncomp -c cpp ex.pcn -DOLD VERSION

8 Integrating Foreign Code

Programming examples presented thus far have focused on the use of PCN to com-

pose procedures written in PCN. Exactly the same syntax and techniques can also

be used to compose procedures written in other (\foreign") languages. Fortran and

C are currently supported.

We deal here with the PCN/foreign interface, the mechanism used to import

foreign procedures, and the mechanism used to link foreign object code with the

PCN run-time system.

8.1 PCN/Foreign Interface

The PCN/foreign interface is de�ned as follows:

� The actual parameters in a call to a foreign program can be mutables or

de�nitional variables of type char, int, or double, or arrays of these types.

� Execution of a foreign procedure delays until all de�nitional arguments have

values.

� All parameter passing is by reference.

� A foreign procedure cannot modify de�nitional arguments.

The last restriction is not currently enforced by the compiler, so the programmer

must be careful to ensure that all programs satisfy this constraint.

Note that a consequence of this de�nition is that all output generated by a

foreign procedure must be returned in mutable arguments. Su�cient storage must

be allocated for these mutables prior to calling the foreign procedure.

Two important di�erences exist between the execution of PCN and foreign proce-

dures called from PCN. First, PCN procedures can execute even if not all de�nitional

arguments do have values. Indeed, they can compute values for de�nitional argu-

ments. In contrast, foreign procedure calls delay until all de�nitional arguments

have values, and can modify mutable arguments only. Second, PCN procedures can

be passed tuples as arguments, whereas foreign procedures can be passed simple

types only.

C. As parameter passing is by reference, arguments to a C procedure called from

PCN must be declared as pointers. That is, the PCN types char, int, and double

correspond to the C language types char *, int *, and double *.

47

Fortran. The PCN types char, int, and double correspond to the Fortran types

CHARACTER, INTEGER, and DOUBLE. As Fortran also passes arguments by reference,

no special treatment of arguments is required. It is necessary to append the su�x

` ' to the name of a Fortran procedure called from PCN.

For example, the following PCN procedure calls a C procedure natural log(a,b)

to compute b = ln(a) and a Fortran procedure power(a,b,c) to compute c = a

b

.

Note the ` ' su�x on the call to power and the use of a local mutable tmp for the

result of the natural log computation.

Module foreign.pcn

proc(a,b,c)

double a,b,c,tmp;

{; natural_log(a,tmp), power_(tmp,b,c)}

The C and Fortran procedures invoked by this program can be written as follows.

File cfile.c

#include <math.h>

void natural_log(a,b)

double *a,*b;

{ *b = log(*a); }

File ffile.f

SUBROUTINE POWER(A,B,C)

DOUBLE PRECISION A,B,C

C = A**B

RETURN

END

8.2 Compiling with Foreign Code

When compiling PCN code that contains calls to foreign procedures, you need not do

anything special to distinguish the foreign calls from normal PCN procedure calls.

Instead, the PCN compiler assumes that any nonintermodule calls (i.e., calls that do

not specify a module) to procedures not de�ned in that module are calls to foreign

procedures. For example, this is what you see when you compile the foreign.pcn

program shown above:

48

% pcncomp -c foreign.pcn

Notice: Call to foreign procedure - natural log

Notice: Call to foreign procedure - power

%

The C and Fortran source �les can be compiled as normal to produce object �les

(.o �les). Alternatively, pcncomp can be used to compile Fortran and C programs.

For example:

pcncomp -c cfile.c

and

pcncomp -c ffile.f

The use of pcncomp to compile C and Fortran source �les is recommended, since

this compile command will work on any machine, no matter what the actual names

of the C and Fortran compilers on the particular machines. In addition, pcncomp

knows how to deal with Fortran programs that use C preprocessor directives (i.e.,

#define, #include, etc.). These source �les should use a .F su�x. Some Fortran

compilers know how to deal with .F �les directly, in which case pcncomp just runs

the Fortran compiler on the .F �le. However, if a Fortran compiler cannot handle a

.F �le, pcncomp will �rst run the �le through cpp before calling the Fortran compiler.

8.3 Linking with Foreign Code

Once all of your PCN source �les are compiled to PCN object (.pam) �les, and your

C and Fortran source �les are compiled to foreign object (.o) �les, you must use

pcncomp to link everything into an executable program.

To do this, simply add the .o �les to the pcncomp link line, for example

pcncomp pcncode.pam ccode.o -o myprogram -mm pcncode

In addition, if you are linking Fortran object code, you must also add a -fortran

ag to the link command. This ensures that Fortran initialization code is added to

the executable program. For example, to link the example program above, you type:

pcncomp foreign.pam cfile.o ffile.o -o foreign -mm foreign -fortran

Like most compilers, pcncomp will also accept foreign libraries, which can be

speci�ed either by adding the appropriate .a �le to the link line, or by using the -l

and -L ags, for example:

pcncomp pcncode.pam ccode.o -o myprogram -mm pcncode libmine.a -lg

For a complete list of the arguments to pcncomp, type:

pcncomp -h

49

8.4 Multilingual Programming

This simple foreign interface allows sequential code (currently, Fortran and C are

supported) to be integrated into PCN programs as procedure calls, indistinguishable

for most purposes from calls to PCN procedures. Thus, we do not need to throw

away the many years of investment in sequential code and compiler development

when moving to parallel computers. Fortran and C are good sequential languages

but are less well suited to parallel programming. Experience suggests that PCN is a

good parallel language; nevertheless, it cannot compete with Fortran and C in code

base and compiler technology. Multilingual programming permits us to take the best

from each approach, using PCN for mapping, communication, and scheduling, and

Fortran and C for sequential computation.

8.5 De�ciency of Foreign Interface

A de�ciency of the Fortran interface is that no special allowance is made for \com-

mon" data (in Fortran programs) or \global" variables (in C programs). Each phys-

ical processor has a single copy of all common/global data declared in an application

program, and every process on a processor has access to that data. Hence, while

PCN data structures are encapsulated in processes to prevent concurrent access, the

same protection is not provided for common/global data. It is the programmer's

responsibility to avoid errors arising from concurrent access. Experience shows that

programmers deal with this problem in one of two ways.

First, if an application is of moderate size, or is being developed from scratch,

they often choose to eliminate common/global data altogether. This may be achieved

by allocating arrays in PCN and passing them to the di�erent foreign procedures.

Although this approach requires substantial changes to the application, the bulk of

the existing foreign code can be retained, and the full exibility of PCN is available

to the programmer.

Second, if substantial rewriting of an application is not possible, programmers

maintain common/global data in its usual form and use PCN to organize operations

on this data in a way that avoids nondeterminate interactions. Although certain

operations are then more di�cult (e.g., process migration is complicated, and the

programmer must check for race conditions manually), other bene�ts of the PCN

approach still apply.

9 Higher-Order Programs Using Metacalls

PCN provides simple support for higher-order programming. In particular, it allows

module and procedure names in procedure calls to be substituted with variables,

which can then be de�ned to be strings at run time. Variables are distinguished

from strings in procedure calls by the use of enclosing back quotes, as follows.

..., `op`(...), ... /* op is a variable */

50

..., m:`op`(...), ... /* op is a variable */

..., `mod`:f(...), ... /* mod is a variable */

..., `mod`:`op`(...), ... /* mod & op are variables */

This sort of call is termed a metacall.

We illustrate the use of these higher-order features with a procedure map list

that applies a supplied operator to each element of a list, collecting the results of

these computations in an output list. The supplied operator is assumed to be a

procedure name (e.g., "f"); the map list procedure invokes this procedure with

two arguments (e.g., f(e,v)).

map_list(op,list,vals)

{? list ?= [e|l1] ->

{|| `op`(e,v),

vals = [v|v1],

map_list(op,l1,v1)

},

list ?= [] -> vals = []

}

For example, if the procedure square is de�ned as

square(e,v) {|| v = e*e }

then a call map_list("square",[1,2,3],vals) will de�ne vals to be the list

[1,4,9].

The map list procedure will work correctly only if the supplied operator (op) is

located in the same module as map list. The following program is more general: it

allows the supplied operator to be a mod:proc(arg) term. Note the use of quoting

in the match operation.

map_list2(op,list,vals)

{? list ?= [e|l1], op ?= `mod`:`proc`(arg) ->

{|| `mod`:`proc`(arg,e,v),

vals = [v|v1],

map_list2(op,l1,v1)

},

list ?= [] -> vals = []

}

Metacalls present a small problem to the PCN linker. The PCN linker normally

includes in the executable program only those PCN procedures that it can determine

will be called. However, since metacalls are procedure calls for which you do not

51

specify the call target until run-time, the linker may not be able to determine that

a metacalled procedure is called and therefore will not link in that procedure. To

handle this situation, two additional PCN source directives are supported:

-metacalls(mod1:proc1, mod1:proc2, ...): This tells the linker that if the mod-

ule containing this directive is included in the executable, then so should

mod1:proc1(), mod1:proc2(), etc.

-proc metacalls(source proc, mod1:proc1, mod1:proc2, ...): This tells the

linker that if the procedure source proc() is included in the executable, then

so should mod1:proc1(), mod1:proc2(), etc.

10 Process Mapping

Parallel compositions de�ne concurrent processes; shared de�nitional variables de-

�ne how these processes communicate and synchronize. Together with the sequential

code executed by the di�erent processes, these components de�ne a concurrent al-

gorithm that can be executed and debugged on a uniprocessor computer. However,

we do not yet have a parallel program: we must �rst specify how these processes are

to be mapped to the processors of a parallel computer.

Important features of PCN are that the mapping can be speci�ed by the pro-

grammer and that the choice of mapping a�ects only the performance, not the

correctness, of the program. In other words, the process mapping strategy applied

in an application can change performance but cannot change the result computed.

(The only exceptions to this rule are if foreign code uses global variables | e.g.,

common blocks | or if PCN code includes nondeterministic procedures.)

For this reason, it is common to develop PCN programs in two stages. First,

program logic is developed and debugged on a workstation, without concern for

process mapping. Second, a process mapping strategy is speci�ed and its e�ciency

is evaluated on a parallel computer, typically by using the Gauge execution pro�ler.

The following language features are used when writing code to de�ne process

mappings.

Information Functions. When de�ning mappings, we sometimes require infor-

mation about the computer on which a process is executing. This information is

provided by the primitive functions topology(), nodes(), and location().

topology(): Returns a tuple describing the type of the computer, for example

f"mesh",16,32g or f"array",512g.

nodes(): Returns the number of nodes in the computer.

location(): Returns the location of the process on the computer.

52

Location Functions. Mapping is speci�ed by annotating procedure calls with

system- or user-de�ned location functions, using the in�x operator \@". These func-

tions are evaluated to identify the node on which an annotated call is to execute;

unannotated calls execute on the same node as the procedure that called them. For

example, the following two function de�nitions implement the location functions

node(i) and mesh node(i,j), which compute the location of a procedure that is to

be mapped to the ith node of an array and the (i,j)th node of a mesh, respectively.

Note the use of a match (?=) to access the components of the mesh topology type.

The per cent character, \%", is the modulus operator.

Example location functions: loc.pcn

function node(i)

{|| return(i%nodes()) }

function mesh_node(i, j)

{? topology() ?= {"mesh", rows, cols} ->

return((i*rows + j)%nodes()),

default -> error()

}

The following composition uses the function node(i) to locate the procedure

calls p(x) and c(x).

fjj p(x) @ node(10), c(x) @ node(20)g

Location functions are often used in the iterative construct called quanti�cation

(see x 4.7).

The following two procedures use quanti�cations and the location functions de-

�ned previously to execute the procedure work in every node of an array and mesh,

respectively. For example, a call to array on a 1024-processor computer will create

1024 instances of work(), one per processor. (In practice, we may choose to use a

more e�cient tree-based spawning algorithm on a large machine.)

53

Examples of quanti�cation

array()

{|| i over 0 .. nodes()-1 ::

work() @ node(i)

}

mesh()

{? topology() ?= {"mesh", rows, cols} ->

{|| i over 0 .. rows-1 ::

{|| j over 0 .. cols-1 ::

work() @ mesh_node(i, j)

}

},

default -> error()

}

Virtual Topologies and Map Functions. The ability to specify mapping by

means of location functions would be of limited value if these mappings had to be

speci�ed with respect to a speci�c computer. Not only might this computer have a

topology that was inconvenient for our application, but the resulting program would

not be portable.

PCN overcomes this di�culty by allowing the programmer to de�ne mappings

with respect to convenient virtual topologies rather than a particular physical topol-

ogy. A virtual topology consists of one or more virtual processors or nodes, plus

a type indicating how these nodes are organized. For example, 512 nodes may be

organized as a one-dimensional array, a 32� 16 mesh, etc.

The embedding of a virtual topology in another physical or virtual topology is

speci�ed by a system- or user-de�ned map function. A map function is evaluated

in the context of an existing topology; it returns a tuple containing three values:

the type of the new embedded topology, the size of the new topology, and the

function that is to be used to locate each new topology node in the existing topology.

For example, the following function embeds a mesh of size rows�cols in an array

topology; the mapping will be performed with the location function node provided

previously in program loc.pcn. Note that the map function does not check whether

the new topology \�ts" in the old topology. It is quite feasible to create a virtual

topology with more nodes than the physical topology on which it will execute.

54

Example Map Function

function mesh_in_array(rows, cols)

{? topology ?= {"array", n} ->

{|| type = {"mesh", rows, cols},

size = rows*cols,

map_fn = {"call",{":","loc","node"},[],[]},

return({type, size, map_fn})

},

default -> error()

}

The assignment to the variable map fn de�nes the function (in this case, loc:node())

that is to be used to compute the location of each new virtual node. The syntax for

this is

var = f"call",f":",module,procedureg,[arg

0

,...,arg

n

],[]g

and speci�es that the location function module:procedure(arg

0

,...,arg

n

) is to

be used. The procedure arguments supplied in this \call" tuple will be prepended to

the arguments that are supplied when the metacall using this \call" tuple is made.

This ugly syntax is due to a current limitation in the compiler that will be

remedied in a future release.

We use the in�x operator \in" to specify the map functions that will generate

the virtual topologies used in di�erent components of a program. For example, if

the mesh procedure speci�ed previously is executed on an array computer, we may

invoke it as follows.

mesh() in mesh in array(rows,cols)

This map function, mesh in array, embeds a virtual mesh computer of size rows�cols

in the array computer.

Virtual topologies and map functions allow us to develop applications with re-

spect to a convenient and portable virtual topology. When moving to a new machine,

it is frequently possible to obtain adequate performance with just a naive embedding

of this virtual topology. For example, our applications invariably treat all computers

as linear arrays, regardless of their actual topology, and nevertheless achieve good

performance. If communication locality were important (for example, if we moved

to a machine without cut-through routing), we would probably have to develop a

map function that provides a more specialized embedding. This can generally be

achieved without changing the application code.

55

11 Port Arrays

Recall that individual processes communicate by reading and writing shared de�ni-

tional variables, as in the composition fjj producer(x), consumer(x)g. The port

array provides a similar mechanism for use when composing sets of processes.

A port array is an array of de�nitional variables that has been distributed across

the nodes of a virtual topology. A declaration \port A[N];" creates a port array

A with N elements, distributed blockwise across the nodes of the virtual topology in

which the port array is declared. (That is, elements are located on virtual topology

nodes in contiguous, equal-sized blocks.) N must be an integer multiple of nodes().

Elements of a port array are accessed by indexing, in the same way as ordinary

arrays; the elements can be used as ordinary de�nitional variables. Each element of

a port array can only be accessed via indexing twice. This restriction allows memory

occupied by port arrays to be reclaimed automatically.

The following procedure uses port arrays for two purposes: �rst, to provide each

ring node() process with de�nitional variables for use as input and output streams;

and second, to establish internal communication streams between neighboring pro-

cesses, so that each process has two streams, one shared with each neighbor. The

ith node of this structure is given elements I[i] and O[i] of the two port arrays

I and O passed as parameters (for communication with the outside world), and two

elements of the local port array S. As in the C programming language, the dimension

of an array passed as an argument is not speci�ed. Notice the use of the informa-

tion function, nodes() (x 10), to de�ne a port array with one element per virtual

topology node.

Example of Ports: ring.pcn

ring(I, O)

port S[nodes()], I[], O[];

{|| i over 0 .. nodes()-1 ::

ring_node(I[i], O[i], S[i], S[(i+1)%nodes()]) @ node(i)

}

The process structure created by a call to this procedure in a four-processor vir-

tual topology can be represented as follows, with the solid lines indicating external

port connections and the dotted lines internal streams. The box separates the inter-

nals of the process structure from what is visible to other processes. The ring node

procedure executed by each process can use the four de�nitional variables passed as

arguments to communicate with other processes.

56

RNRN RN RN

I[0] I[1] I[3]

O[0] O[2]O[1] O[3]

I[2]

S[1] S[2 S[3] S[0]S[2]

12 Reuse of Parallel Code

The ability to reuse existing code is vital to productive programming. The PCN

system supports two forms of reuse: reuse of sequential code written in C or Fortran,

and reuse of parallel code written in PCN. The former, which is discussed in x 8,

is important when migrating existing sequential applications to parallel computers;

the latter is becoming increasingly important as our parallel code base grows.

Cells. Our approach to the reuse of parallel code is based on what we term a

software cell: a set of processes created within a virtual topology to perform some

distinct function such as a reduction or a mesh computation, and provided with

one or more port arrays for communication with other program components. We

have already seen several examples of cells: for instance, the procedure ring in the

preceding section implements a cell that performs ring pipeline computations.

The interface to a PCN cell consists simply of the port arrays and de�nitional

variables that are its arguments. A cell de�nition does not name the processors on

which it will execute, the processes with which it will communicate, or the time

at which it expects to execute. These decisions are encapsulated in the code that

composes cells to create parallel programs: a virtual topology speci�es the number

and identity of processors, port arrays specify communication partners, and the PCN

compiler handles scheduling. As we will see in subsequent examples, the simplicity

of this interface allows cells to be reused in many di�erent contexts.

Templates. The ring cell would be more useful if the code to be executed at each

node could be speci�ed as a parameter. This is possible through the use of metacalls

(x 9), and in this case we refer to the cell de�nition as a template, as it encodes a

whole family of similar cells. For example, the following is a template version of

ring. The procedure to be executed is passed as the parameter op, which is quoted

in the body to indicate that it is used as a variable.

57

Example Template

ring(op, I, O)

port S[nodes()], I[], O[];

{|| i over 0 .. nodes()-1 ::

`op`(I[i], O[i], S[(i+1)%nodes()], S[i]) @ node(i)

}

This template invokes the supplied procedure with four de�nitional variables as

additional arguments. For example, if op has the value nbody(p), then a proce-

dure call nbody(p,d1,d2,d3,d4) (d1..d4 being the variables from the port array)

is invoked on each node of the virtual topology. All parameters to op must be def-

initional variables; it is the programmer's responsibility to ensure that the number

and type of these parameters match op's de�nition.

Example. We illustrate how cells and templates are composed to construct com-

plete applications. We make use of the ring template and also the following simple

input and output cells: load reads values from a �le and sends them to successive

elements of the port array P; store writes to a �le values received on successive

elements of port array Q. Both use the sequential composition operator to sequence

I/O operations.

load(file, P)

port P[];

{; i over 0 .. nodes()-1 ::

{; read(file, stuff),

P[i] = stuff

}

}

store(file, Q)

port Q[];

{; i over 0 .. nodes()-1 ::

write(file, Q[i])

}

We compose the three cells to obtain a procedure compose that reads data from

infile, executes a user-supplied function in the ring pipeline (e.g., a naive N-body

algorithm), and �nally writes results to outfile. Note that although we use a

parallel composition, data dependencies will force the three stages to execute in

sequence. However, if load were to output a stream of values rather than a single

value per node, then the three stages could execute concurrently, as a pipeline.

58

compose(param, infile, outfile)

port P1[nodes()], P2[nodes()];

{|| load(infile, P1),

ring(nbody(param), P1, P2),

store(outfile, P2)

}

Data ows from load to ring via port array P1 and from ring to store via

port array P2. This is illustrated in the following �gure, which shows the process

structure created in a four-node topology.

RNRN RN RN

store

load

P1

P2

The complete program executes in an array topology (\compose(param,if,of) in array()")

and will create a ring with one process per node of that topology.

13 Using Multiple Processors

A PCN program annotated with process mapping directives will execute correctly

on a single processor. However, in order for the mapping directives to improve (or

degrade!) performance, it is necessary to run the program on multiple processors.

The syntax used to start PCN on multiple processors varies according to the type

of parallel computer. On multicomputers, we are generally required �rst to allocate

a number of nodes and then to load the program in these nodes. For example, on

the Intel iPSC/860, we must log into the host computer (System Resource Manager:

SRM) and type the following commands to allocate 64 nodes, run the program, and

�nally free the allocated nodes.

59

% getcube -t 64

% load myprogram ; waitcube

% killcube

% relcube

On multiprocessors (e.g., a shared-memory Sun multiprocessor), we generally

need only to add a -n ag to the command line when running the program. For

example, to run on 4 processors, we type the following.

% myprogram myargs -pcn -n 4

The -pcn argument tells the run-time system that all subsequent arguments are

run-time system arguments (not arguments meant for the user's program). The -n

4 run-time system argument says to run this program on 4 processors.

The -n option can also be used to spawn multiple communicating PCN nodes

on a uniprocessor workstation. This is not normally useful, however, as all nodes

will just multitask on that workstation's simple processor. However, this option can

be useful for debugging purposes under certain circumstances.

When running on a network, we generally need to either list on the command

line the names of the computers on which to run nodes, or provide a con�guration

�le indicating the names of the computers on which PCN is to run. See x 23 for

more information about running PCN on networks.

For details about how to use PCN on your computer, turn to the discussion of

machine dependencies in xx 19{23.

14 Debugging PCN Programs

PCN provides a rich set of facilities for locating syntactic, logical, and performance

errors in programs.

14.1 Syntax Errors

Syntax errors are detected and reported by the compiler. An error message consists

of the �le name, a line number, and a message indicating the type of error.

Warning messages are also generated by the compiler to indicate type mis-

matches between procedure de�nitions and calls, etc. It is good programming prac-

tice to write programs that do not generate warnings.

60

14.2 Logical Errors

Support for detection of logical errors is provided by the debugging version of the

PCN run-time system. To use this version, you must add a -pdb argument to the

pcncomp link line. Use of this version is recommended during program development.

This debugging version provides a wide range of capabilities, including

1. Bounds checking is performed on all array and tuple accesses.

2. Checks are made for circular references, such as would be caused by fjjA=B,B=Ag.

3. The data immediately preceding and following data structures that are passed

to foreign procedures are checked for validity upon return from the foreign

procedure. This can help in locating array bounds violations in foreign code.

4. If you add a -gc after foreign as a run-time system command line argu-

ment (i.e., after the -pcn argument), a \garbage collection" (a technique for

reclaiming unused storage) is invoked immediately after every foreign proce-

dure call. This can help in tracking down foreign code that is corrupting PCN's

internal data structures. A garbage collection involves a full consistency check

of PCN's data structures. Since pure PCN code should never corrupt these

data structures, a garbage collection failure while using this feature normally

indicates that the previously called foreign procedure wrote outside its proper

bounds. If the run-time system crashes with this feature turned on, the fatal

error message that is printed will contain the name of the last foreign procedure

that was called.

5. PCN object �les (i.e., .pam �les) can be dynamically loaded into an executable

at run-time. This feature eliminates the need to relink your program each time

you modify a PCN source �le, and therefore can greatly speed the debug cycle

of PCN programs. See x 15.9 for the details of this feature.

6. Typing Control-C (^C) during program execution provides access to the PCN

symbolic debugger, PDB (x 15).

Additional, low-level logical debugging support is provided by command line

arguments that cause the PCN run-time system to print detailed information about

individual procedure calls. These facilities are described in x 27; their use is not

recommended in normal circumstances. This low-level debugging support can also

be accessed through PDB variables.

14.3 Performance Errors

We use the term performance error to refer to programs that compute correct an-

swers but for some reason do not make e�cient use of available computer resources.

Two tools are integrated with the PCN system to assist in the detection of perfor-

mance errors: Gauge and Upshot. These are described in x 16 and x 17, respectively.

61

Gauge is an execution pro�ler: it collects information about the amount of time

that each processor spends in di�erent parts of a program. It also collects procedure

call counts, message counts, and idle-time information. Two properties of Gauge

make it particularly useful: pro�ling information is collected automatically, without

any programmer intervention, and the volume of information collected does not

increase with execution time. A powerful data exploration tool permits graphical

exploration of pro�le data.

Upshot is a more low-level tool that can provide insights into the �ne-grained

operation of parallel programs. Upshot requires that the programmer instrument

a program with calls to event logging primitives. These events are recorded and

written to a �le when a program runs. A graphical trace analysis tool then allows

the programmer to identify temporal dependencies between events.

62

Part II

Reference Material

15 PDB: A Symbolic Debugger for PCN

Debuggers play an important role when programming in any language, including

PCN. However, PCN is considerably di�erent from sequential languages such as C

and Fortran. For example, PCN uses both light weight processes and dataow syn-

chronization extensively. Therefore, a PCN debugger must have special capabilities

designed to meet PCN's atypical requirements.

PDB, the PCN debugger, �ts this bill. It incorporates features found in most

debuggers, such as the ability to set breakpoints on procedures, interrupt execu-

tion, and examine program arguments. In addition, it incorporates capabilities that

support atypical features of PCN, such as light weight processes and dataow syn-

chronization. In particular, PDB allows you to examine enabled and suspended

processes and to control the order in which processes are scheduled for execution.

15.1 The PCN to Core PCN Transformation

The operation of PDB is complicated by the fact that the PCN run-time system

does not support PCN directly, but rather a simpler language called core PCN,

which lacks sequential composition and nested blocks. The PDB debugger operates

on core PCN rather than PCN; hence, some understanding of the transformations

used by the compiler to translate PCN to core PCN is necessary before PDB can be

used e�ectively.

Nested Blocks. Nested blocks within PCN programs (except for sequential or

parallel blocks nested in a top-level choice block) are replaced with calls to separate

auxiliary procedures that contain these blocks. An auxiliary procedure is given the

name of the procedure from which it was extracted, followed by an integer su�x.

The choice of integer su�x is somewhat arbitrary; in general, however, su�xes are

assigned in the order in which the corresponding auxiliary procedure calls appear in

the original procedure.

Sequential Composition. Additional auxiliary procedures may be introduced as

\wrappers" on operations occurring in sequential compositions. A wrapper delays

execution of an operation until previous computations in the sequential composition

have completed.

Wrappers are also generated to encode calls to primitive operations for which

arguments may not be available at run time. Such wrappers delay computation

until de�nitional arguments are de�ned. For example, a wrapper for the assignment

x:=y, where y is a de�nition, will delay execution until y has a value.

Wrappers are named in the same manner as other auxiliary procedures: with a

procedure name followed by a number.

63

Sequencing Variables. Every procedure has two additional variables added to

its argument list. These variables are used for sequencing of procedure calls. They

are commonly referred to as the Left and Right sequencing variables. A procedure

will suspend until its Left variable is de�ned. When the procedure and its o�spring

have completed execution, Right is de�ned to be the same as Left. These variables

often (but not always) occur at the end of the argument list.

Within a sequential block, the Right variable of one procedure call is the same as

the Left variable of the next. This ensures that procedures execute in strict sequence.

For example, the sequential block

Example of a sequential block

p()

{; q(),

r(),

s()

}

is transformed to a procedure similar to the following.

Example of a transformed sequential block

p(L,R)

data(L) ->

{|| q(L,M1),

r(M1,M2),

s(M2,R)

}

Within a parallel block, all procedure calls use the parent procedure's Left vari-

able as their own Left, and a temporary variable as their Right. The temporary

Right variables are passed to a barrier procedure which de�nes the Right variable

for the parallel block when all of the temporary variable have been de�ned. For

example, the parallel block

Example of a parallel block

p()

{|| q(),

r(),

s()

}

is transformed to a procedure similar to the following (where p.1 is the barrier

procedure).

64

Example of a transformed parallel block

p(L,R)

data(L) ->

{|| q(L,M1),

r(L,M2),

s(L,M3),

p.1(M1,M2,M3,R)

}

p.1(M1,M2,M3,R)

data(M1), data(M2) -> R = M3

Barrier Processes. As demonstrated in the preceding example, the PCN com-

piler sometimes generates calls to special barrier procedures. These are used to orga-

nize synchronization of procedures in a parallel block. These auxiliary programs are

named in the same manner as other auxiliary procedures created by the compiler.

However, they can usually be distinguished by the fact that all but one of their

arguments are the Right synchronization variables of other procedures. Fortunately,

these auxiliary barrier procedures can generally be ignored when debugging.

Wildcards. A procedure name is a mod:procedure pair. Some PDB commands

that take procedure names as arguments allow the use of a limited form of a wildcard

facility to specify a set of procedures. An asterisk (*) placed at the end of a procedure

name designates all procedures that begin with the speci�ed name. For example,

mod:program1* designates all procedures in module mod whose names begin with

program1. The degenerative case of a procedure wildcard is simply a * (e.g., mod:*).

In this case, all procedures within the appropriate module are speci�ed.

Module names can also be speci�ed with this limited wildcard facility. For

example, a module wildcard of env* designates all modules whose names start with

env, and a simple * designates all loaded modules.

15.2 Obtaining Transformed Code

As described in x 15.1, a PCN program is transformed to core PCN before execution.

When debugging programs with PDB it is often helpful to have this transformed

version of the code available for reference, since that transformed version is really

the code that is being executed.

When compiling your PCN program, you can have the compiler dump the trans-

formed version of your program simply by adding a -dumpafter basic ag to the

pcncomp compile line. Assuming the original PCN program is named prog.pcn, a

�le named prog.basic.dump will be created that contains a nicely formatted rep-

resentation of the transformed PCN program.

65

15.3 Naming Processes

Execution of a PCN program can create a large number of lightweight processes.

Each process executes a PCN procedure | either a procedure named in the original

source, or an auxiliary procedure introduced by the transformation to core PCN.

In order to simplify the task of distinguishing between the many processes that

may be created during execution of a program, PDB associates three distinct labels

with each process.

1. The name of the procedure that the process is executing (nonunique).

2. An instance number (unique).

3. The process reduction in which the process was created (nonunique).

Note: A reduction is one completed execution of a process. The run-time system

keeps a reductions counter that it increments after each reduction.

As we shall see in x15.5, PDB also provides information about the status of a

process, for example, whether it is able to execute or is waiting for data.

15.4 Using the Debugger

Linking with PDB run-time system. To use PDB, you must link your program

with the PDB version of the run-time system. This is accomplished by simply adding

a -pdb argument to the pcncomp link command.

-pdb command line argument. When you run your program, if you add a

-pdb run-time system command line argument (i.e., after the -pcn argument), your

program will be interrupted and control passed to PDB before any PCN procedures

are executed.

Control-C. Once your program is running, you can enter PDB by interrupting the

program with an interrupt signal. This signal is typically invoked by typing Control-

C (^C). If you interrupt your program while it is executing a foreign procedure, that

foreign procedure will be completed before control is passed to PDB.

Once control is passed to the debugger, PDB commands can then be used to

examine the state of the computation, set breakpoints on PDB procedures, en-

able/disable debugging on procedures, or resume execution of the PCN program.

Once resumed, normal PCN execution continues until you interrupt the program

execution again or until a breakpoint is encountered, causing control to revert back

to the debugger. It is also possible to specify that control pass to the debugger if the

active queue becomes empty. This is accomplished by setting the debugger variable

empty queue break (x 15.7).

.pdbrc When a program that is linked with the PDB version of the run-time

system starts up, it searches for a .pdbrc �le in the current directory, and then in

your home directory (~). Any PDB commands found in such a �le are executed.

This feature allows the state of PDB to be initialized every time PDB is run.

66

Abbreviating PDB Commands. PDB commands can be abbreviated to the

shortest string that uniquely identi�es the command. (There are a few exceptions

to this rule. For example, since the show command is typically used extensively, it

can be abbreviated to s, even though s does not uniquely identify this command.)

To �nd out the shortest abbreviation for PDB commands, use the PDB help

facility by typing help at the PDB command prompt.

Help. PDB has extensive online help | type help at the PDB command prompt

for more information.

15.5 Examining the State of a Computation

We now describe the PDB commands used to examine the state of a PCN compu-

tation. For you to understand how these commands work, we need to say a little

bit about how the PCN run-time system manages execution of PCN programs.

Queues. The PCN run-time system manages the execution of processes created to

execute procedure calls in parallel blocks. Like a simple computer operating system,

it selects processes from an active queue and executes them either until they block

because of a read operation on an unde�ned de�nitional variable or until a timeslice

is exceeded. In the former case, the process is moved to a variable suspension queue

associated with the unde�ned de�nitional variable (unless the process requires two

or more variables, in which case it is moved to a global suspension queue). In the

latter case (a timeslice), the process is moved to the end of the active queue. PDB

also maintains a fourth pending queue. This is used to hold processes from the active

queue that the user has indicated are to be delayed (i.e., removed from consideration

by the PCN scheduler).

In summary, every PCN process is to be found on one of the following four

queues:

active The active queue contains processes that may be scheduled for execution.

pending The pending queue contains processes that the user has tagged to be de-

layed. These cannot be executed until returned to the active queue.

globsusp The global suspension queue contains processes that are suspended on

more than one variable.

varsusp The variable suspension queue contains processes that are suspended on

just one variable.

When describing commands, we shall use the notation <queue> to represent a

queue selector| one of active, pending, globsusp, and varsusp; or suspension

(both globsusp and varsusp) and all (all process queues).

We shall also use the notation <process> to represent a process speci�cation;

this is one of the following:

67

� n: n is an integer, representing an index into a process queue;

� m � n: m and n are integers, representing a range of indices into a process

queue;

� #n: n is an integer, representing a process instance number;

� ^n: n is an integer, representing the reduction during which a process was

created;

� Uh: h is a hexadecimal number, representing an unde�ned variable that is

somewhere in a process's argument list;

� modulename:blockname, representing all processes of a given name;

� all.

As noted in x 15.1, a limited wildcard facility allows a single <process> speci�er to

represent several processes.

Examining Queue Contents. The summary, list, and show commands allow

the user to examine the four process queues at increasing levels of detail. These

commands (and the queue-manipulation commands described in the next section)

operate only on processes executing procedures for which debugging is enabled. The

set of enabled procedures is initially all procedures; the set can be modi�ed by using

the debug and nodebug PDB commands.

In the following descriptions, all arguments that are listed within square brackets

([]) are optional:

summary [<queue>] [<process>]: prints a summary of the contents of the des-

ignated <process> on the designated <queue>. This includes module and

procedure names (sorted by module and then procedure) and the number of

occurrences of each procedure on each queue.

list [<queue>] [<process>]: prints a short listing of the processes speci�ed by

<process> on the speci�ed <queue>.

show [<queue>] [<process>]: prints a detailed description of the processes speci�ed

by <process> in the speci�ed <queue>. If the process is on the variable

suspension queue, the variable that it requires in order to continue execution

is also shown.

Modifying Queues. The move and switch commands are used to control how

processes in the active queue are selected for execution. They can be applied only

to the active and pending queues.

move <queue> <process> [<where>]: This moves zero or more designated pro-

cesses in a designated queue (active or pending) to immediately before po-

sition where in the same queue. If where is end, then the designated processes

are moved to the end of the queue. By default, <where> is end.

68

switch <queue> <process> [<where>]: This moves zero or more designated pro-

cesses from a designated queue (active or pending) to the other queue (i.e.,

pending or active, respectively), inserting them immediately before position

where. If where is end, the designated processes are placed at the end of the

queue. By default, <where> is end.

15.6 Breakpoints

PDB allows breakpoints to be set on PCN procedures. When a process that is

executing a procedure for which a breakpoint is set is scheduled for execution, the

run-time system will interrupt the program and pass control to PDB.

Note that a process may be scheduled for execution several times before it is

able to complete. For example, a process may be scheduled but will subsequently

suspend because of an unde�ned variable. When that variable is later de�ned, the

process will again be scheduled. A breakpoint on that process's procedure will cause

a break into PDB each time the process is scheduled.

The break, delete, enable, and disable commands control breakpoints, and

status prints information about breakpoints.

break [<module>:<procedure> ...]: Set a breakpoint on the speci�ed procedure.

If no procedures are given, then all current breakpoints are listed.

delete [<breakpoint number> ...]: Delete the speci�ed breakpoint number. The

breakpoint number can be determined by running the break command with

no arguments. If no breakpoints are given, then all breakpoints will be deleted.

disable <breakpoint number> ...: Disable (but do not delete) the speci�ed break-

point.

enable <breakpoint number> ...: Enable the speci�ed breakpoint.

status [<module>:<procedure> ...]: Print breakpoint status information about

the specifed procedure(s).

15.7 Debugger Variables

PDB maintains a number of internal variables that can be included in some PDB

commands and, in some cases, modi�ed by the programmer. PDB variables are

distinguished in expressions by a pre�x $.

Modi�able Variables. The following variables can be used to control aspects of

PDB's behavior. They can be modi�ed within PDB by using the \=" command.

$print array size: An integer representing the maximum size (i.e., number of

elements) of an array displayed by print.

$print tuple depth: An integer representing the maximum depth of a tuple dis-

played by print.

69

$print tuple width: An integer representing the maximum width (i.e., number of

elements) of a tuple displayed by print.

$emulator dl: An integer representing the emulator debug level. This turns on

the printing of debugging information in the main emulator loop. It takes an

integer value between 0 and 9, where 0 is no debugging and 9 is the most

debugging. See x 27 for more information on this variable.

$gc dl: An integer representing the garbage collection debug level. This turns on

the printing of debugging information in the garbage collector. It takes an

integer value between 0 and 9, where 0 is no debugging and 9 is the most

debugging. See x 27 for more information on this variable.

$parallel dl: An integer representing the parallel code debug level. This turns on

the printing of debugging information in the parallel emulator code. It takes

an integer value between 0 and 9, where 0 is no debugging and 9 is the most

debugging. See x 27 for more information on this variable.

$global dl: An integer representing the global debug level. This turns on the

printing of debugging information not covered by the $emulator dl, $gc dl,

or $parallel dl debug setting. It takes an integer value between 0 and 9,

where 0 is no debugging and 9 is the most debugging. See x 27 for more

information on this variable.

$reduction break: An integer representing the next reduction at which to break

into PDB.

$empty queue break: A Boolean value. When this value is set to yes, the system

will break into PDB whenever the process queues are empty, and therefore

there are no schedulable processes. When this value is set to no, the system

will not break into PDB whenever the process queues are empty.

$print orphaned: A Boolean value. When this value is set to yes, the system will

print out a warning when it encounters an orphan process (x 15.10) during a

garbage collection.

Read-Only Variables. The following variables contain information about various

aspects of the state of the computation. They can be included in expressions but

cannot be modi�ed directly.

$module: The name of the current module (i.e., �rst process on the active queue).

$procedure: The name of the current procedure (i.e., �rst process on the active

queue).

$args: The arguments of the current process. Note that this variable is de�ned only

at the entry to a block.

$instance: The instance number of the current process.

70

$reduction : The reduction during which the current process was created.

$current reduction: The current reduction number.

15.8 Miscellaneous Commands

This section describes miscellaneous debugger commands that were not described in

other parts of this manual.

In the following, <expr> denotes either a PCN variable name (to be interpreted

in the context of the current process) or a constant.

abort: Abort execution of the PCN run-time system. See also continue, next, and

quit.

continue: Continue with next process (head of the active queue). See also abort,

next and quit.

debug <module>:<procedure> ...: Enable debugging in the speci�ed module:procedure.

See also nodebug.

help [<topic> :] Give help for topic. If topic is left o�, then general help will be

given.

load <�lename>: Load the .pam �le, �lename, into the run-time system.

modules: List the names of the modules that are currently loaded in the system,

indicating for each whether it was compiled in debug mode (in the current

PCN release, this column always says \n") and whether debugging is enabled.

next: Execute the next process (head of the active queue), and then break into the

debugger again when it has completed. See also abort, continue, and quit.

nodebug <module>: Disable debugging in the speci�ed module:procedure. See also

debug.

print <expr>: Print the given expression. An expression is a variable, integer,

real, or string. <expr> is either a single expression or a comma-separated list

of expressions that is enclosed in parentheses.

procedures <module>:<procedure> ...: Print various information about the spec-

i�ed procedure(s).

quit: Quit from the debugger; disable debugging on all modules. See also abort,

continue, and next.

source <�lename>: Execute the PDB commands that are in the �le �lename.

vars: List the names and values of all PDB variables.

71

15.9 Dynamic Loading of .pam Files

The PCN linker is relatively slow. In order to accelerate the modify-compile-link-

test program development cycle, PDB supports dynamic loading of PCN object �les

(i.e., .pam �les), which eliminates the link step from this cycle when PCN �les are

modi�ed.

When a .pam �le is dynamically loaded into a running program, the procedures

in that �le simply replace previously linked versions of those procedures. If there

are procedures in this .pam �le that did not previously exist in the executable, then

they will be added.

The -pdb ag must be passed to the linker (via pcncomp) if dynamic loading is

to be used. The -link all ag is also recommended. The latter ag tells the linker

to include all procedures in all modules named on the command line, rather than

just those procedures reachable from the entry point. This ensures that standard

libraries, such as sys and stdio, are included in their entirety. Thus, you can dy-

namically load code that calls library procedures that were not called in the original

program.

For example, you might link your program with the command:

pcncomp -pdb -link all mymod1.pam mymod2.pam -mm mymod1 -o myprogram

There are two ways in which .pam �les can be dynamically loaded:

From the command line: You can use the -load command line argument to

cause a set of .pam �les to be dynamically loaded before any PCN procedures

are executed. For example, the command

myprogram myargs -pcn -load mymod1.pam:mymod2.pam

will dynamically load the procedures in mymod1.pam and mymod2.pam into

myprogram, overwriting those provided at link time.

From the PDB prompt.: The load command descibed in x 15.8 will dynamicly

load .pam �les into the executable. This, of course, means that you can dy-

namically load .pam �les from a .pdbrc �le, which is a useful feature if you are

repeatedly running the program and do not wish to type the -load command

line argument each time.

15.10 Orphan Processes

An orphan is a process suspended on a variable for which there are no potential

producers (more precisely, a variable to which no other process possesses a reference).

Such a process can never be scheduled for execution. A program that generates

orphan processes is not necessarily erroneous. However, it is good programming

practice to ensure that orphans are not generated (i.e., that all processes in a program

terminate).

72

Orphan processes can be detected by the garbage collector invoked by the PCN

run-time system to reclaim space occupied by inaccessible data structures. Normally,

the garbage collector destroys these processes silently. However, the PDB version of

the PCN run-time system prints a warning message for each orphan encountered.

The PDB variable, $print orphaned, can be used to disable these orphan pro-

cess messages (see x 15.7).

16 The Gauge Execution Pro�ler

Gauge is an execution pro�ler for PCN programs. It collects pro�le data such as the

time spent in each procedure on each node, the number of times each procedure is

called, idle times, and internode message counts and volumes. This pro�le data can

subsequently be graphically displayed by using an interactive data exploration tool.

16.1 Linking a Program for Pro�ling

In order to collect a Gauge pro�le on a program, you must �rst link your program

with a version of the run-time system that supports pro�ling. To do this, simply

add a -profile to your pcncomp link command, for example:

pcncomp myprogram.pam -o myprogram -mm myprogram -profile

By default, only procedures from the the user's modules, the stdio library, and sys

library are pro�led; the system modules used to implement process mapping, etc.,

are ignored. However, you have full control over which modules will be pro�led,

through the use of linker arguments:

-no nmp: Turns on full pro�ling, including system modules.

-nmp <module>: Turns o� pro�ling on the module. (NMP stands for No Module

Pro�le.)

16.2 Pro�le Data Collection

A pro�le is generated by executing your program with a -gauge and/or -gauge file

command line argument. The pro�le will be performed on all nodes, and on all

modules for which pro�ling was enabled during linking. If the -gauge ag is used,

the pro�le will be written into the �le profile.cnt. The -gauge file ag allows

a di�erent �lename to used. For example, the following command runs myprogram

and writes a pro�le into the �le myprof.cnt.

myprogram -pcn -gauge file myprof.cnt

73

16.3 Snapshot Pro�les

By default, a pro�le will be taken only at the end of the run and is cumulative

for the entire run. However, it is sometimes useful to examine several pro�les of

your program collected at various stages of execution. This can be accomplished by

calling

profile snapshot(snapshot name)

in your program, where snapshot name is a string that will be used to name the

snapshot. A call to this foreign procedure on any node will cause a snapshot pro�le

to be generated on all nodes. (Note that this means that it is a serious mistake

to call profile snapshot() on every node; this will generate P snapshots, each

involving all P processors.) Each snapshot is cumulative { the pro�le is not reset

after a snapshot, so procedure executions times, etc., include the times from previous

snapshots.

A call to profile snapshot() has no e�ect unless you have linked with the

pro�ling version of the run-time system (i.e., used the -profile ag when linking),

and you have enabled pro�ling (i.e., used the -gauge or -gauge file command line

ag). Hence, calls to profile snapshot() can be maintained in a program and

enabled when required from the command line.

16.4 Data Exploration

Gauge provides an X-windows-based graphical interactive tool for exploring pro�le

data collected by using the methods described above. This tool combines three sorts

of data to provide detailed information about execution time on a per-procedure and

per-processor basis, idle time, number of messages, volume of messages and other

program execution statistics. These data are

� instruction counts collected by the compiler,

� pro�le data collected by the run-time system when a pro�le is taken, and

� information about the computer on which the program was run.

The Gauge analysis tool gets the �rst and second of these from the .cnt �le that

is produced by the run-time system when a pro�le is taken. The third is taken from

the host �le which may need to be speci�ed by the user (see x16.5).

The data exploration tool is invoked by typing the following Unix command:

gauge

This creates a top-level window with three parts. The top section of the window is

a command window. You can click the left mouse button on one of the commands

to obtain help, to exit, or to invoke the gauge analysis window. The middle section

indicates the current directory. The bottom window gives a list of .cnt and .cnt.Z

(compressed .cnt) �les and directories in the current directory. Files are selected

74

by pressing the left mouse button while the pointer is over the �le name. If you wish

to change selections, just press the left mouse button over a di�erent �le, or no �le

if you want to eliminate all selections.

The directory window serves two purposes. If you select a .cnt �le in the

directory window using the left mouse button and then select the Gauge command

from the top row of buttons, Gauge is invoked on that �le. Gauge can also be

invoked on a .cnt or .cnt.Z �le by double-clicking on its name in the directory

window. Double-clicking on a directory name opens that directory, thus allowing

navigation of the directory system.

Gauge has an online help facility. To use it, select the \help" button on any

window. Either the scroll bar or the page-down (Control-v) and page-up (Meta-v)

commands can be used to position the help text within the help window. When

�nished, you can dismiss the help screen using the close button on the bottom of

the screen. If you leave the screen up, it will be reused to display the next help

message.

Occasionally something might go wrong, and Gauge will generate a warning

message in a popup window. Nothing else can be done until this window is dismissed

by clicking the left mouse button in it.

The only command-line arguments recognized by Gauge are those recognized by

the X Toolkit Intrinsics. This means that X-windows arguments such as -icon can

be used.

16.5 The Host Database

When you invoke Gauge on a .cnt or .cnt.Z �le, a warning message may be dis-

played indicating that your machine does not appear in the host database. (Click

on the warning window to make it disappear.) This means that you must add the

machine on which your application was run to the host database that Gauge accesses

to determine various machine characteristics when displaying performance data.

The program pcnhost is provided to simplify the task of adding entries to the

host database. A call to this program has the form

pcnhost machinetype

or

pcnhost -h hostname machinetype

The machinetype argument speci�es an architecture type for machine computer

hostname. If a host name is not speci�ed, the name of the machine on which the

pcnhost command is executed is added to the database. The following machine

types are currently supported:

� symmetry-b, symmetry: Sequent Symmetry Rev. B

� sparcstation-1, ss1, sun4: A Sun SPARCstation 1

� sun3: A Sun 3 workstation

75

� next040: A NeXT workstation

� iris: An SGI Iris workstation

� s2010: A Symult s2010 multicomputer

� rs6000: An IBM RS/6000 workstation

� ipsc860: An Intel iPSC/860 (i860 processing nodes)

� ipscii: An Intel iPSC/II (386 nodes)

Note that updates to the database are not synchronized. If more than one update

is being made simultaneously, information can be lost.

16.6 X Resources

Gauge requires a resource �le to operate properly. This should be in

$(INSTALL DIR)/lib/app-defaults/gauge

where $(INSTALL DIR) is the directory where gauge has been installed (typically,

/usr/local/pcn). The command

xrdb -merge $(INSTALL DIR)/lib/app-defaults/gauge

should be added to one's .xinitrc or .xsession �le. If a color workstation is being

used,

xrdb -merge $(INSTALL DIR)/lib/app-defaults/gauge.server

is also needed. Of course, any customized resource �les could be used.

Alternatively, you can run xrdb gauge before running gauge. The xrdb gauge

program simply executes the two xrdb commands shown above.

17 The Upshot Trace Analyzer

Upshot is a trace collection and analysis tool. There are three steps that you need

to perform in order to use Upshot with PCN:

1. Instrument a program.

2. Run your instrumented program and collect a log.

3. Analyze the log.

The last step requires that you obtain and install the X windows based Upshot

log event analysis tool. You can obtain it by anonymous ftp from:

info.mcs.anl.gov

in the directory

pub/upshot

76

17.1 Instrumenting a Program

You instrument your program by adding calls to procedures which, when executed,

log a timestamped event. An event consists of a type and an optional task identi�er

and data value. You can instrument PCN, C, and Fortran code.

To instrument your program, you must �rst add:

#include "pcn upshot.h"

to PCN and C source �les that will contain event logging calls.

Then, the following calls can be added to your PCN, C, and/or Fortran source

to log Upshot events:

� LOG EVENT(event type)

� LOG TASK EVENT(task id, event type)

� LOG TASK EVENT DATA(task id, event type, data val)

In these calls, task id and event type are positive integers, and data val is an

integer. None of these calls return a value.

17.2 Compiling and Linking the Instrumented Program

In PCN and C code, the above-mentioned LOG* calls are actually macros that call

the correct procedures if the C preprocessor variable UPSHOT is de�ned, and which

do nothing if it is not. Therefore, when compiling your PCN and C source with

these calls, you need to add a -DUPSHOT argument to have them take e�ect:

pcncomp -c pcnsource.pcn -DUPSHOT

pcncomp -c csource.c -DUPSHOT

In Fortran, the above-mentioned LOG* calls are just calls to procedures that

are de�ned in the run-time system. Therefore, you can compile your instrumented

Fortran source as usual:

pcncomp -c fsource.f

When linking a program that contains event logging calls, you must add a

-profile ag to the pcncomp link command:

pcncomp pcnsource.pam csource.o -mm pcnsource -profile -o myprogram

77

17.3 Collecting a Log

A program that contains event logging calls stores events in memory when it is

executed. When it completes execution, it writes these events to �les, one per

processor.

A program only collects a log if the -upshot command line argument is speci�ed.

For example:

myprogram myargs -pcn -upshot

This causes a log �le to be written for each node on which the program is running.

These �les are called log.0, log.1, etc. The pre�x of the log �lename can be

changed by using the -upshot file ag.

By default, a program only allocates memory for 10,000 events. An error is

reported if more than this number of events are logged. The maximum number of

log events can be changed by using the -upshot log size ag.

The following example collects a log during the execution of myprogram, puts

the logs in �les with a mylog pre�x, and can record a maximum of 20,000 log events:

myprogram myargs -pcn -upshot file mylog -upshot log size 20000

17.4 Analyzing a Log

As previously mentioned, execution of a program with the -upshot argument pro-

duces one log �le for each node, for example, log.0, log.1, etc. These �les must

be merged by using the Unix command mergelogs to create a single log �le, for

example,

mergelogs log.* > log

We can then call the Upshot visualization program to display a set of time lines,

one per processor, with the various events logged by our program displayed on the

appropriate time lines:

upshot -l log

Frequently, we are not interested in the events themselves but rather in execution

states de�ned in terms of starting events and ending events. For example, we might

de�ne a \busy" state as starting when an event is logged indicating that a message

has been received on a stream, and ending when an event is logged indicating that

a response has been sent. We de�ne states in a states �le, specifying each state in

terms of a unique integer identi�er, a starting and an ending event type, a color,

and a label, for example:

File my.sts

1 10 11 blue init_ico

2 12 13 red init_rh

3 14 15 pink init_geo

4 16 17 yellow get_side

78

Upshot does not support nested states. That is, it is not meaningful for a trace

to include sequences in which two start state events occur without an intervening

end state event.

The name of any state �le is speci�ed to Upshot by means of the -s command

line option, as follows.

upshot -l log -s my.sts

18 Standard Libraries

The sys and stdio modules are distributed with the PCN system and may be called

from within user programs to invoke a variety of useful functions. They are invoked

via intermodule calls.

In the following discussion, the notations # and " on program arguments denote

input and output arguments, respectively.

18.1 System Utilities

The sys module provides the following general utility procedures.

merger(Is#,Os") merges messages appearing on input stream Is to produce output

stream Os. If the input stream Is contains a message of the form f"merge",Sg,

then the stream S is also merged with Os. The output stream Os is closed when

all merged input streams are closed. (Cf. x 4.10 for more details.)

distribute(N#,Is#) distributes messages received on input stream Is to N output

streams; output streams are numbered 0 to N-1. (Cf. x 4.10 for more details.)

The distributor may receive three types of message on input stream Is:

f"attach",N1#,S#,D"g causes stream S to be attached to output stream num-

bered N1; D is de�ned when the action is complete to signify that messages

may subsequently be forwarded to stream S.

fN2#,M#g causes the message M to be appended to output stream numbered

N2.

f"all",M#g causes the message M to be appended to all of the output streams.

(I.e., Broadcast the message to all output streams.)

When the input stream Is is closed, all output streams are closed. (Cf. x 4.10

for more details.)

hash(N#,Is#) creates a hash table of size N and receives messages on input stream

Is. Four messages may be sent to a hash table:

79

f"add",K#,V#,S"g causes the value V to be added to the hash table under key

K; if there was already an entry for key K, then status S=0; otherwise S=1.

f"lookup",K#,V",S"g causes a lookup operation on key K. If there is an entry

for key K, then V is the associated value and status S=1; otherwise S=0.

f"del",K#,V"g deletes the entry for key K and returns the value V associated

with the entry if one existed; otherwise returns -1.

f"dump",L",D"g dumps the contents of the hash table into a list L and de�nes

D when the operation is complete.

integer to list(I#,Lb",Le#) di�erence list Lb-Le is de�ned to be the list con-

taining the integers of the ASCII representation of integer I.

list to integer(L#,I") I is de�ned to be the integer that is represented by the

ASCII values (integers) in the list L.

integer to string(I#,S") S is de�ned to be the string that represents the integer

I.

string to integer(S#,I") I is de�ned to be the integer that is represented by the

string S.

double to list(D#,Lb",Le#) di�erence list Lb-Le is de�ned to be the list contain-

ing the integers of the ASCII representation of the double D.

list to double(L#,D") D is de�ned to be the double that is represented by the

ASCII values (integers) in the list L.

double to string(D#,S") S is de�ned to be the string that represents the double

D.

string to double(S#,D") D is de�ned to be the double that is represented by the

string S.

list to string(L#,S") S is de�ned to be the string that is represented by the

ASCII values (integers) in the list L.

string to list(S#,Lb",Le#) di�erence list Lb-Le is de�ned to be the list contain-

ing the integers of the ASCII characters in the string S.

list to tuple(L#,T") T is de�ned to be the tuple with elements speci�ed by list

L.

tuple to list(T#,Lb",Le#) di�erence list Lb-Le is de�ned to be the list containing

the arguments of tuple T.

integer to double(I#,D") D is de�ned to be the double cast of the integer I.

double to integer(D#,I") I is de�ned to be the integer cast of the double D.

80

list length(L#,Len") Len is de�ned to be the length (integer) of the list L.

list concat(L1#,L2#,Lout") Lout is de�ned to be the concatenation of list L1

followed by list L2.

list member(element#,list#,status") status is de�ned to be the integer 1 if

element is a member of the list list, and the integer 0 if it is not.

left shift(Src#,N#,Dest") Dest is de�ned to be the integer Src left shifted N

bits. (Dest = Src << N)

right shift(Src#,N#,Dest") Dest is de�ned to be the integer Src right shifted N

bits. (Dest = Src >> N)

ones complement(Src#,Dest") Dest is de�ned to be the one's complement of the

integer Src. (Dest = ~Src)

bitwise and(Src1#,Src2#,Dest") Dest is de�ned to be the bitwise and of integers

Src1 and Src2. (Dest = Src1 & Src2)

bitwise or(Src1#,Src2#,Dest") Dest is de�ned to be the bitwise inclusive or of

integers Src1 and Src2. (Dest = Src1 | Src2)

bitwise xor(Src1#,Src2#,Dest") Dest is de�ned to be the bitwise exclusive or of

integers Src1 and Src2. (Dest = Src1 ^ Src2)

double cast(From#,To") To is de�ned to be the double cast of the integer or double

From.

integer cast(From#,To") To is de�ned to be the integer cast of the integer or

double From.

abs(From#,To") To is de�ned to be the absolute value of From. If From is a double,

then To will be a double. If From is an integer, then To will be an integer.

string length(S#,Len") Len is de�ned to be the length (integer) of the string S.

string concat(S1#,S2#,Sout") Sout is de�ned to be the string that is the con-

catenation of string S1 followed by string S2.

string list concat(string list#,separator#,Sout") string list is a list of

strings, and separator is a string. Sout is de�ned to be the string that is

the concatenation of the strings in string list with the separator between

each.

find substring(string#,substring#,index") index is de�ned to be the integer

location (starting with 0) of the �rst occurence of the string substring in the

string string, or -1 if substring is not a substring of string.

81

find substring reverse(string#,substring#,index") index is de�ned to be the

integer location (starting with 0) of the last occurance of the string substring

in the string string, or -1 if substring is not a substring of string.

substring(string#,start#,len#,substring") substring is de�ned to be the

substring of string starting at location start (numbering starts with 0) with

the length len. If len is -1, then the substring starting at start through the

end of string will be extracted.

18.2 Standard I/O

The stdio module provides a set of PCN procedures that are analogous to the

C language standard input/output (stdio) library. It is important to realize that

calls to stdio are sequenced only if they occur within a sequential block. Output

generated by parallel calls to printf or other output procedures may be interleaved.

Most of the stdio procedures take an output argument, status. This argument

should be an unde�ned variable when the call is made. It will be de�ned by the

stdio procedure to an appropriate return code. This argument can be used both to

check the status of the I/O call and to sequence subsequent execution if necessary.

The stdio procedures that deal with �les rather than the keyboard or screen

require a �le pointer (fp) argument. This argument should be a mutable of type

FILE (de�ned in the C header �le pcn stdio.h).

18.2.1 Reference

We now summarize the procedures provided by the stdiomodule. The arguments to

all of these procedures follow as closely as possible their corresponding C procedures.

Please refer to a C programming manual for more complete descriptions.

fopen(filename#,type#,fp",status") opens the �le named filename. The �le is

opened for the given type of I/O operation, where type is a string containing

an appropriate combination of "r", "w", "a'', and "+". The mutable fp is

assigned to be the �le pointer. status is de�ned to be 0 if the open succeeds;

otherwise it will be set to the error number (C errno).

freopen(filename#,type#,fp"#,status") like fopen(), except that it substitutes

the named �le in place of the open stream, fp. This is typically used to attach

the preopened stdin, stdout, and stderr to speci�ed �les.

fdopen(fildes#,type#,fp",status") opens the �le with the integer �le descriptor

fildes. The other arguments are the same as for fopen().

fclose(fp#,status") closes the �le designated by fp. status is de�ned to be EOF

if there is an error.

fflush(fp#,status") ushes all bu�ered data for the output �le designated by fp

to be written to that �le. The �le remains open. status is de�ned to be EOF

if there is an error.

82

putc(c#,fp#,status") appends the character c to the designated output stream

fp. status is de�ned to be the character written, or EOF if there is an error.

fputc(c#,fp#,status") is the same as putc().

putchar(c#,status") is the same as putc() to standard output (the screen).

puts(s#,fp#,status") appends the string s followed by a newline to standard

output. status is de�ned to be EOF if there is an error.

fputs(s#,fp#,status") appends the string s (not followed by a newline) to the

designated output stream fp. status is de�ned to be EOF if there is an error.

printf(format#,args#,status") prints formatted output to standard output. The

format string accepts the same format as the C language's printf() proce-

dure, with two additions: it can contain a %t, which means to print a grounded

term, and %lt, which means to print an ungrounded term. The %t and %lt

can also take an integer immediately after the %, which means to print only to

that depth. The args argument is a tuple of all the arguments to printf, as

required by the format. (Since PCN procedures cannot take a variable num-

ber of arguments, as in C, all of the data arguments must be combined into a

single argument using a PCN tuple.) status is de�ned to be the number of

characters written, or EOF if there is an error.

fprintf(fp#,format#,args#,status") is the same as printf(), except that out-

put will go to fp rather than to standard output.

sprintf(buf",format#,args#,status") is the same as printf(), except that the

output is placed into the de�nitional variable buf.

getc(fp#,c") gets one character from the input stream fp and de�nes it to c. c is

de�ned to be EOF on end of �le or an error.

fgetc(fp#,c") is the same as getc().

getchar(c") is the same as getc() from standard input (the keyboard).

ungetc(c#,fp#,status") pushes the character c back onto the input stream fp.

status is de�ned to be the pushed character, or EOF if there is an error.

gets(s",status") reads a string from standard input and de�nes it to s. The

string is terminated by a newline character, which is replaced in s by a null

character. status is de�ned to be the number of characters read, or EOF

upon end of �le.

fgets(s",n#,fp#,status") reads n � 1 characters, or up through a newline char-

acter, whichever comes �rst, from the stream fp and de�nes it to s as a string.

The newline is not removed as in gets(). status is de�ned to be the number

of characters read, or EOF upon end of �le.

83

scanf(format#,args",status") is similar to the scanf() procedure in C. It takes

its input from standard input and places the values that it reads in the de�-

nitional variables contained in the tuple args. Note: This procedure does not

support the %t argument for term scanning.

fscanf(fp#,format#,args",status") is the same as scanf(), except that the

input comes from the passed stream, fp.

sscanf(buf#,format#,args",status") is the same as scanf(), except that the

input comes from the passed bu�er, buf.

stdout(fp") assigns the mutable fp to be the �le pointer for standard output

(stdout).

stdin(fp") assigns the mutable fp to be the �le pointer for standard input (stdin).

stderr(fp") assigns the mutable fp to be the �le pointer for standard error (stderr).

fseek(fp#,offset#,whence#,status") calls the C fseek function with the fp,

offset, and whence arguments to set the position for the next input or output

operation on this �le. The status argument is de�ned to be 0 if the operation

completes successfully, or -1 if it fails.

ftell(fp#,offset") calls the C ftell function with the fp argument. The offset

argument is de�ned to be the o�set from the beginning of the �le to the current

position, or -1 if there is an error.

rewind(fp#) calls the C rewind function with the fp argument to set the position

to the beginning for the next input or output operation on this �le. This is

equivalent to fseek(fp,0,0,).

fread(buf",size#,nitems#,fp#,status") reads nitems of data, each of size

bytes in length, from the stream fp. buf is de�ned to a character array con-

taining this data. status is de�ned to be the number of items actually read,

or 0 upon EOF or error.

fwrite(buf#,size#,nitems#,fp#,status") writes nitems of data, each of size

bytes in length, to the stream fp. buf is a character array containing the data

to be written. status is de�ned to be the number of items actually written,

or 0 upon EOF or error.

access(path#,mode#,status") checks the given �le, path for accessibility accord-

ing to mode. mode is the inclusive or of the bits R OK, W OK, and X OK {

read, write, and execute (search) permissions, respectively. A mode of F OK

(i.e., 0) tests whether the directories leading to the �le can be searched and

the �le exists. status is de�ned it 0 if the �le is accessible.

remove(filename#,status") removes the speci�ed filename. status is de�ned

to 0 if the operation succeeded.

84

rename(oldname#,newname#,status") rename the �le oldname to newname. status

is de�ned to 0 if the operation succeeded.

18.2.2 Examples

Opening and Closing Files. The following examples illustrates the use of the

fopen, fclose, stderr, and fprintf procedures. Note the include statement for

pcn stdio.h, which includes a de�nition for FILE.

#include <pcn_stdio.h>

open_test(fname)

FILE fp, err;

{; stdio:fopen(fname, "r", fp, status),

{? status == 0 ->

{; stdio:printf("File \"%s\" opened\n",{fname},_),

/* ... */

stdio:fclose(fp,_)

},

default ->

{; stdio:stderr(err),

stdio:fprintf(err,

"Error opening \"%s\" for reading\n",{fname},_)

}

}

}

Writing to a File. This example opens a �le ptest for writing, writes the char-

acters ABC to this �le, and then closes the �le.

#include <pcn_stdio.h>

putc_test()

FILE fp;

{; stdio:fopen("ptest","w",fp,_),

stdio:putc('A',fp,_),

stdio:putc('B',fp,_),

stdio:putc('C',fp,_),

stdio:fclose(fp,_)

}

85

Writing to the Screen. This example writes the characters ABC followed by a

newline character to the screen (standard input).

#include <pcn_stdio.h>

putchar_test()

{; stdio:putchar('A',_),

stdio:putchar('B',_),

stdio:putchar('C',_),

stdio:putchar('\n',_)

}

Printing to the Screen. The following program uses the printf command to

print a variety of terms of the screen. Note the use of the %t format command to

print arbitrary terms. When executed, the program acts as follows.

Str: A string

Real: -1.230000

List: ["A string",-1.230000,f"a",1,2,3g]

Tup: f"a",1,2,3g

The program can be modi�ed to write the same text to a �le by adding an fopen

call, substituting fprintf for printf throughout, and �nally closing the �le.

Module p test.pcn

#include <pcn_stdio.h>

printf_test()

{; str = "A string",

r = 0 - 1.23, /* No unary minus in PCN */

tup = {"a",1,2,3},

ls = [str,r,tup],

stdio:printf("Str: %s\nReal: %f\n",{str,r},_),

stdio:printf("List: %t\nTup: %t\n",{ls,tup},_)

}

Creating Strings. We illustrate the use of the sprintf command to create a

string. When executed, the sprintf test procedure prints the string file 5.

86

#include <pcn_stdio.h>

sprintf_test()

{; i = 5,

stdio:sprintf(mystring,"file_%d",{i},_),

stdio:printf("mystring = %s\n",{mystring},_)

}

Reading Characters. This example shows the use of the stdin and getc proce-

dures to read a series of characters from the keyboard (standard input). The pro-

cedure getc test prints a prompt, reads characters until an end of line is reached,

and then prints the result.

Enter line: my line

Line entered: my line

The program can also be written by using the getchar procedure (which reads

directly from standard input), avoiding the need for the call to stdin.

Module r test.pcn

#include <pcn_stdio.h>

getc_test()

FILE fp;

{; stdio:stdin(fp),

stdio:printf("Enter line: ",{},_),

getc_test1(fp,ls),

sys:list_to_string(ls,str),

stdio:printf("\nLine entered: %s\n",{str},_)

}

getc_test1(fp,ls)

FILE fp;

{; stdio:getc(fp,ch),

{? ch == '\n' -> ls = [],

default ->

{; ls = [ch|ls1],

getc_test1(fp,ls1)

}

}

}

87

19 Cross-Compiling

Pcncomp supports cross-compilation. For example, if a Sun has the necessary C and

Fortran cross-compilers for the Intel iPSC/860, the Sun version of pcncomp can be

used to compile PCN programs for the iPSC/860.

To cross-compile PCN programs for some machine, add a -target target name

argument to pcncomp compile and link commands. For example, the following com-

mands compile and link a program containing C, Fortran, and PCN source on the

Intel iPSC/860:

% pcncomp -c my c.c -target ipsc860

% pcncomp -c my f.f -target ipsc860

% pcncomp -c my pcn.pcn -target ipsc860

% pcncomp my pcn.pam my c.o my f.o -mm my pcn

-o myprogram -target ipsc860

Alternatively, the native C and Fortran cross-compiler (i.e., icc and if77 on the

iPSC/860) can be used directly, instead of through pcncomp, to compile the Fortran

and C portions of the program. The advantage to using pcncomp is that you need

not know the cross-compiler's name, location, and special arguments. Those details

are taken care of by pcncomp, based on the cross-compilation con�guration when it

is installed.

Specifying a cross-compilation target of \default" (i.e., -target default) is

equivalent to not supplying a -target argument at all. This can be useful in writing

portable Make�les, as described in x 26.

20 Intel iPSC/860 Speci�cs

To compile a PCN program for the Intel iPSC/860, follow the cross-compilation

instructions in x 19, using a target of \ipsc860".

The resulting iPSC/860 executable program can be run by logging into the

iPSC/860 host (SRM), allocating an appropriately sized cube, and loading the pro-

gram. Once PCN terminates, we free the cube. In the following example, we assume

that the host is called gamma:

88

% rlogin gamma

% getcube -t 4

% load myprogram; waitcube

% killcube

% relcube

If you wish to supply arguments to your program, those arguments must be part

of the load command:

% load myprogram myargs -pcn -gauge; waitcube

21 Intel Touchstone DELTA Speci�cs

To compile a PCN program for the Intel Touchstone DELTA, follow the cross-

compilation instructions in x 19, using a target of \delta".

Before you can run the resulting DELTA executable program, you must copy it

onto the DELTA's CFS �lesystem using either ftp or rcp.

Then you can log into the DELTA and run the program via the mexec com-

mand. This command speci�es the height and width of the submesh to allocate,

and the executable to load on the nodes in the submesh. For example, the following

command would load myprogram onto a 4 by 8 node mesh:

% mexec "-t(4,8)" -f myprogram

If you wish to supply arguments to your program, those arguments must be part

of the -f ag:

% mexec "-t(4,8)" -f "myprogram myargs -pcn -gauge"

89

22 Sequent Symmetry Speci�cs

Running PCN on the Sequent Symmetry is similar to running PCN on a workstation.

The pcncomp command, used for compiling and linking, is identical to that described

throughout this manual.

The -n run-time system command line argument is used to run PCN with several

nodes. For example, the following command runs myprogram on 10 nodes:

% myprogram -pcn -n 10

The Symmetry has two di�erent C compilers that can be used to compile C

foreign code. They are cc and atscc. atscc should be used if it is available, as

it supposedly produces better code than the standard cc compiler. Fortran code

should be compiled by using the fortran compiler. However, if you use pcncomp to

compiler your C and Fortran code, then you need not worry about these details.

23 Network Speci�cs

The network version of PCN (net-PCN) uses Berkeley stream interprocess commu-

nication (TCP sockets) to communicate between nodes. A node can run on any

machine that supports TCP. Hence, a single PCN computation can run on several

workstations of a particular type, several workstations of di�ering types, several

processors of a multiprocessor, or a mix of workstations and multiprocessor nodes.

Current restrictions are listed in x 23.6.

Net-PCN currently operates on the NeXT, Sun, DECstation, HP9000, IBM

RS/6000, and SGI Iris.

Using net-PCN is the same as using PCN on other platforms except that the user

must specify on which machines PCN nodes are to run and may also be required to

specify where on those machines PCN is to be found and the commands necessary

for running net-PCN nodes on the given machines.

There are several di�erent ways of starting net-PCN, each appropriate for dif-

ferent types of network. We shall consider each of these in turn, starting with the

easiest. First, we provide some background information on the Unix remote shell

command rsh, which is used to start net-PCN nodes.

23.1 Using rsh

The Unix remote shell command rsh is a mechanism by which a process on one

machine (e.g., my-host) can start a process on another machine (e.g., my-node). A

remote shell command can proceed only if my-host has been given permission to

start processes on my-node. There are two ways in which this permission can be

granted.

90

� The �le /etc/hosts.equiv exists on my-node and contains an entry for my-host.

This �le must be created by the system administrator.

� The �le .rhosts exists in the home directory of the user running the remote

shell on my-node and contains a line of the form

my-host username

where username is the name of the user login on my-host. This �le is created

by the user.

Some sites disallow the use of .rhosts �les. If .rhosts usage is disallowed and

the host machine is not in /etc/hosts.equiv, remote shells cannot be used to create

remote processes. Alternative mechanisms must be used, as described below.

The full syntax of the rsh command is as follows:

rsh hostname -l username command arguments

The username here is the login to be used on the remote machine. If username is not

speci�ed, it defaults to the login name of the user on the local machine. Furthermore,

if the login name used on the local machine is di�erent from the login name on the

remote machine, the .rhosts �le for the account on the remote machine must have

an entry allowing access for that account on the host machine.

23.2 Specifying Nodes on the Command Line

The simplest way to start PCN on a network of machines is to use the -nodes <nodelist>

command line argument, where nodelist is a colon-separated list of machine names

on which PCN nodes are to run. For example,

myprogram -pcn -nodes pelican:raven:plover

will run myprogram on four nodes, with one node on the machine from which this

command is run (the host) and one node on each of the machines named in the

nodelist: pelican, raven, and plover.

This startup method works only if

1. rsh (x 23.1) works from the host to each machine in nodelist, and

2. each of the nodes shares a common �lesystem with the host. The reason for

this is that the host runs each node in the directory in which pcn is invoked.

If the host and a node have di�erent �lesystems, the rsh used to start up that

node is likely to fail.

If any of these conditions does not hold, then net-PCN must be started by using

one of the alternative methods described below.

Note that we can always create multiple nodes on a single processor by using the

-n command line ag. The command

91

mypcn -pcn -n nnodes

forks nnodes - 1 nodes on the local machine (resulting in a total of nnodes pro-

cesses) which communicate by using sockets. This feature can be useful for debug-

ging purposes, or on multiprocessing machines.

23.3 Using a PCN Startup File

The second net-PCN startup method that we consider can be used if nodes do not

share a common �le system with the host. However, it still requires that rsh work

from the host to each node.

This method uses a startup �le to de�ne the locations of remote PCN node

processes. Lines in this �le identify the machines on which nodes are to be started.

Startup File Syntax. A line of the form

fork n-nodes

causes n-nodes node processes to be started on the local machine. These nodes

communicate with the other nodes via sockets, even though they are on the same

machine as the host.

A line of the form

exec n-nodes: command -pcn $ARGS$

causes command to be executed. command is the command that invokes PCN on

the appropriate machine. The host process replaces $ARGS$ at run time with the

necessary arguments to PCN to cause it to start n-nodes node processes.

Blank lines in startup �les and lines starting with whitespace, %, or # are ignored.

Examples of Startup Files. A startup �le containing the lines

fork 1

exec 1: rsh fulmar myprogram -pcn $ARGS$

starts one node on the local machine (in addition to the host node) and one node

on the host fulmar, using the PCN executable called myprogram.

A startup �le containing the line

exec 1: rsh fulmar -l bob myprogram -pcn $ARGS$

starts one node using the program called myprogram on host fulmar using the PCN

executable pcn and the account for username bob. If we assume the PCN host is

being run by user olson on host host-machine, then the .rhosts �le in the home

directory of user bob on fulmar must contain the entry

host-machine olson

92

A startup �le containing the line

exec 3: rsh fulmar "cd /home/olson/pcn; ./myprogram -pcn $ARGS$"

runs three nodes on fulmar of the PCN executable myprogram after changing to the

directory /home/olson/pcn.

A startup �le containing the line

exec 2: sh -c 'echo "myprogram -pcn $ARGS$ &" | rsh fulmar /bin/sh'

is a more complex example that starts up two nodes on fulmar. This example has the

desirable side e�ect that the rsh process exits after starting the PCN node, whereas

in the other examples the rsh will not complete until the node process completes.

Using a Startup File. We execute net-PCN with a startup �le pcn-startup by

using the -s run-time system command line argument:

myprogram -pcn -s pcn-startup

23.4 Starting net-PCN without rsh

If your computer system does not support the use of rsh, you will need to start

remote nodes by hand or by using a utility called host-control. See the sepa-

rate manual: R. Olson, Using host-control, Argonne National Laboratory Technical

Memo ANL/MCS-TM-154.

23.5 Ending a Computation

Normally all nodes of a net-PCN computation will exit upon completion of the

computation or upon abnormal termination of PCN. If for some reason this is not

the case, you must log on to each machine that was executing a net-PCN node and

manually kill the PCN process.

23.6 Limitations of net-PCN

Number of Nodes. The number of nodes available in a net-PCN computation is

limited by the number of �le descriptors available to a process (an operating system-

imposed limit). On modern versions of Unix, there are generally more than sixty

�le descriptors available. Hence, in practice, the number of �le descriptors is not

likely to be a major problem.

Heterogeneous Networks. Currently, no support exists for executing net-PCN

between machines with di�erent byte orders and/or di�erent oating-point repre-

sentations. Net-PCN does execute correctly between di�erent machines if they use

the same byte-ordering and oating point representation (we have run net-PCN

successfully between Sun 3, Sun 4, and NeXT computers). However, you must be

93

careful when using foreign code in this case because, for example, structure packing

in C may di�er between di�erent compilers.

24 Further Reading

PCN Language This text provides an introduction to the PCN language and a

discussion of techniques used to reason about PCN program:

M. Chandy and S. Taylor, An Introduction to Parallel Programming,

Jones and Bartlett, 1991.

This paper describes the PCN language, including recent extensions for process

mapping and templates, as well as surveying major applications:

I. Foster, R. Olson, and S. Tuecke, Productive Parallel Programming:

The PCN Approach, Scienti�c Programming, Vol. 1, 1992, pp. 51{66.

Programming and Proof Techniques The following book provides a readable

and entertaining presentation of many of the basic parallel programming techniques

used in PCN:

I. Foster and S. Taylor, Strand: New Concepts in Parallel Program-

ming, Prentice Hall, Englewood Cli�s, N.J., 1989.

The proof theory for PCN is based in part on that for Unity, which is described in

detail in

M. Chandy and J. Misra, Parallel Program Design: A Foundation,

Addison-Wesley, 1988.

Software cells, templates, and parallel software reuse are discussed in:

I. Foster, Information Hiding in Parallel Programs, Preprint MCS-

P290-0292, Argonne National Laboratory, 1992.

PCN Toolkit The Program Transformation Notation (PTN) tool is described in

I. Foster, Program Transformation Notation: A Tutorial, Technical

Report ANL-91/38, Argonne National Laboratory, 1991.

The host-control program used to manage network implementations of PCN is

described in

R. Olson, Using host-control, Technical Memo ANL/MCS-TM-154,

Argonne National Laboratory, 1992.

94

PCN Implementation The techniques used to compile PCN for parallel com-

puters and to implement templates are described in

I. Foster and S. Taylor, A Compiler Approach to Scalable Concurrent

Program Design, Preprint MCS-P306-0492, Argonne National Labora-

tory, 1992.

A detailed description of the PCN run-time system can be found in

I. Foster, S. Tuecke, and S. Taylor, A Portable Run-Time System for

PCN, Technical Memo ANL/MCS-TM-137, Argonne National Labora-

tory, 1991.

The design, implementation, and use of the Gauge performance analysis system are

described in

C. Kesselman, Integrating Performance Analysis with Performance

Improvement in Parallel Programs, Ph.D. thesis, UCLA, 1991.

A description of the Upshot trace analyzer can be found in

V. Herrarte and E. Lusk, Studying Parallel Program Behavior with

Upshot, Technical Report ANL-91/15, Argonne National Laboratory,

1991.

Applications Papers describing PCN applications include

I. Chern and I. Foster, Design and Parallel Implementation of Two

Methods for Solving PDEs on the Sphere, Proc. Conf. on Parallel Com-

putational Fluid Dynamics, Stuttgart, Germany, Elsevier Science Pub-

lishers B.V., 1992, pp. 83{96.

D. Harrar, H. Keller, D. Lin, and S. Taylor, Parallel Computation

of Taylor-Vortex Flows, Proc. Conf. on Parallel Computational Fluid

Dynamics, Stuttgart, Germany, Elsevier Science Publishers B.V., 1991,

pp. 193{206.

I. Foster and J. Michalakes, MPMM: A Massively Parallel Mesoscale

Model, Proc. 5th ECMWF Workshop on Parallel Processing in Meteo-

rology, ECMWF, Reading, England, 1992.

95

Part III

Advanced Topics

25 pcncomp and the PCN linker

For a complete list of the arguments to pcncomp, run:

pcncomp -h

In general, pcncomp tries to follow the normal Unix conventions for C and Fortran

compiler arguments.

PCN linker. The PCN linker, which is called by pcncomp, does not replace the

standard Unix linker, ld. Instead, it operates at a higher level than ld. The PCN

linker's primary function is to coalesce the PCN object code contained in the .pam

�les and turn it into machine object code that can be passed to ld to be linked with

the run-time system, the user's foreign object code, and system libraries.

This is accomplished by creating a C source �le that contains initialized C data

structures with names known to the run-time system. This C �le is then compiled

and linked with everything else to produce an executable program. The C �le

is usually named with a \pcnt " pre�x, followed by the name of the executable

program that we are creating.

The PCN linker is a new feature of PCN version 2.0. Its advantages compared

to techniques used in earlier releases include a standalone executable, faster startup

on large parallel computers, faster intermodule calls, faster compilation, and greater

ease of use. A signi�cant disadvantage is slower linking. This is a problem particu-

larly during the debugging stage of program development. To alleviate this problem,

a limited form of dynamic loading of .pam �les is supported by PDB. This removes

the time-consuming link step from the debug cycle, yet preserves all of the advan-

tages of the PCN linker during production runs. See x 15.9 for details on dynamic

loading of .pam �les, and x 26 on how to exploit the creation of the pcnt �le to

reduce the link time when debugging foreign code.

26 Make�le

This section provides an example Make�le for use with PCN programs. We also

provide some discussion of the Make�le, including some \tricks" to reduce link times.

96

Example Make�le

PAMS = pcncode.pam

OBJS = fcode.o ccode.o

PCNT = pcnt_myprogram

MAIN_MOD = pcncode

PROG_NAME = myprogram

FORTRAN = -fortran

FLAVOR =

PCN_BASE = /usr/local/pcn

TARGET = default

PCNCOMP = $(PCN_BASE)/bin/pcncomp

PCNCOMPFLAGS = $(FORTRAN) $(FLAVOR) -target $(TARGET)

all: $(PROG_NAME)

pams: $(PAMS)

objs: $(OBJS)

$(PCNT).c: $(PAMS)

$(PCNCOMP) $(PCNCOMPFLAGS) $(PAMS) -o $(PCNT).c \

-pcnt -mm $(MAIN_MOD)

$(PROG_NAME): $(PCNT).o $(OBJS)

$(PCNCOMP) $(PCNCOMPFLAGS) $(PCNT).o $(OBJS) \

-o $(PROG_NAME)

.SUFFIXES: .pcn .pam .c .o .f

.pcn.pam:

$(PCNCOMP) $(PCNCOMPFLAGS) -c $*.pcn

.c.o:

$(PCNCOMP) $(PCNCOMPFLAGS) -c $*.c

.f.o:

$(PCNCOMP) $(PCNCOMPFLAGS) -c $*.f

clean:

rm -f *.pam *.mod *~ $(PROG_NAME) *.dump pcnt* *.o

97

Portability. Since pcncomp is used to compile the C and Fortran source �les, this

Make�le is highly portable. The details of the actual C and Fortran compiler names,

their locations, special arguments that they take, etc., are handled automatically by

pcncomp.

Adaptability. The entire Make�le is parameterized by the �rst seven variables

at the top of the Make�le. It can be quickly adapted to di�erent programs. In

addition, these variables can easily be overridden from the command line to create

PDB and/or pro�ling versions of the program. For example, to create a version of

the program that is linked with the PDB run-time system, you would run:

make FLAVOR=-pdb

Cross-compilation. Cross-compilation to di�erent machines is simple with this

Make�le. (See x 19 for more on cross-compilation.) By default, it will compile

the program for whatever machine the make is running on. But by overriding the

TARGET variable from the command line, we can easily cross-compile the program

for di�erent machines. For example, to cross-compile for the Intel iPSC/860, you

would run:

make TARGET=ipsc860

Debugging exibility. Section x 25 discusses how the PCN linker operates. It

creates a pcnt.c �le (a C source �le) that contains all of the necessary information

from the .pam �les, compiles that �le to a pcnt.o �le, and then links that pcnt.o

�le with the run-time system, foreign object �les, and system libraries to create an

executable program.

When debugging foreign code, you can exploit the fact that the PCN linker

creates this intermediate pcnt �le to greatly reduce link times. If a foreign procedure

is modi�ed, there is no need to create a new pcnt �le before linking. Only changes

in the PCN code will a�ect the pcnt �le. So, instead of creating a new pcnt �le

each time foreign code is modi�ed, the one from the previous link will su�ce.

When working on PCN code, link a version with PDB by running:

make "FLAVOR=-pdb -link all"

This will give you a version of the program that you can use with dynamic loading

to quickly debug your PCN code without having to relink after each change (see

x 15.9).

98

27 Run-Time System Debugging Options

The PDB version of the run-time system incorporates a variety of low-level execution

tracing facilities. These facilities are controlled through the following four debug-

level variables. The value of each variable can range from 0 to 9, with 0 meaning no

trace output and 9 maximum trace output.

Emulator Debug Level: This controls debugging information in the main pro-

cess scheduling loop. For example, level 2 causes all intermodule calls to be

printed, level 3 additionally prints the entry and exit of foreign procedures,

and level 9 prints a complete trace of the PCN abstract machine instruction

being executed.

Garbage Collector Debug Level: This controls debugging information in the

garbage collector. For example, level 2 causes a short summary to be printed

each time a garbage collection occurs.

Parallel Debug Level: This controls debugging information relating to the par-

allel aspects of the system. For example, level 5 causes debugging information

about the low-level message handling between nodes to be printed.

Global Debug Level: This controls debugging information not covered by the

other three variables. For example, level 1 causes startup parameters and

boot arguments to be printed.

The four debug levels can be manipulated in two ways. On a single node,

they can be modi�ed through the use of the PDB variables ($emulator dl, $gc dl,

$parallel dl, and $global dl) described in x 15.7.

The debug levels can also be set from the command line. The following run-time

system command line arguments (i.e., they must appear after the -pcn argument)

set the various debug levels on all nodes, including the host.

-d <level> : This sets all debug levels.

-e <level> : This sets the emulator debug level. It overrides the level set by the

-d ag.

-g <level> : This sets the garbage collector debug level. It overrides the level set

by the -d ag.

-p <level> : This sets the parallel debug level. It overrides the level set by the

-d ag.

The following argument enables low-level trace information after a speci�ed num-

ber of procedure calls.

-r <reduction number> : Do not print any debugging output until the number

of procedure calls given by reduction number has been executed.

99

The following command line arguments can be used to set debug levels selectively

in di�erent nodes of a multiprocessor.

-node <node number> : Apply the following node debug level ags only to a par-

ticular node, node number. If this argument is not used or node number is -1,

then apply the following node debug level ags to all nodes.

-nd <level> : This sets all debug levels on the appropriate node(s).

-ne <level> : This sets the emulator debug level on the appropriate node(s). It

overrides the level set by the -nd ag.

-ng <level> : This sets the garbage collector debug level on the appropriate

node(s). It overrides the level set by the -nd ag.

-np <level> : This sets the parallel debug level on the appropriate node(s). It

overrides the level set by the -nd ag.

-nr <reduction number> : Do not print any debugging output on the appropriate

node(s) until the reduction number reduction has been reached.

For example, the following command would set the emulator debug level to 3

and the garbage collector debug level to 2 on node 5 of a 10-node run.

myprogram -pcn -n 10 -ne 3 -ng 2 -node 5

All debugging messages are preceded by the node number from which the message

originated and reduction number on that node when the message was printed. When

debug levels are set on multiple nodes simultaneously the debugging output from

these nodes will be interleaved. The node and reduction number can help you sort

out these interleaved messages.

Interleaving problems can be avoided by telling the run-time system to log all

debugging messages to �les, instead of to the screen, by putting a -log on the

command line. The system will then create a Logs directory into which all debugging

output will be printed. Further, the debugging output from each node will be put

in a separate �le in this Logs directory.

100

Part IV

Appendices

A Obtaining the PCN Software

The PCN software is available by anonymous FTP from Argonne National Labo-

ratory, in the pub/pcn directory on info.mcs.anl.gov. The latest version of this

document is also available at the same location. The following session illustrates

how to obtain the software in this way.

% ftp info.mcs.anl.gov

Connected to anagram.mcs.anl.gov.

220 anagram.mcs.anl.gov FTP server (Version 5.60+UA) ready.

Name (info.mcs.anl.gov:XXX): anonymous

331 Guest login ok, send ident as password.

Password: /* Type your user name here */

230- Guest login ok, access restrictions apply.

Argonne National Laboratory Mathematics & Computer Science Division

All transactions with this server, info.mcs.anl.gov, are logged.

230 Local time is Fri Nov 8 18:26:39 1992

ftp> cd pub/pcn

250 CWD command successful.

ftp> ls

200 PORT command successful.

150 Opening ASCII mode data connection for file list.

pcn v2.0.tar.Z

README

pcn prog.ps.Z

pcn prog.tar.Z

226 Transfer complete.

78 bytes received in 1.3e-05 seconds (5.9e+03 Kbytes/s)

ftp> binary

200 Type set to I.

ftp> get pcn v2.0.tar.Z

200 PORT command successful.

150 Opening BINARY mode data connection for pcn v2.0.tar.Z (XXX bytes).

226 Transfer complete.

local: pcn v2.0.tar.Z remote: pcn v2.0.tar.Z

XXX bytes received in YY seconds (ZZ Kbytes/s)

ftp> quit

221 Goodbye.

101

B Supported Machines

The following table lists the machines on which PCN is currently supported, along

with the architecture name.

Architecture Machine name

delta Intel Touchstone Delta

ipsc860 Intel iPSC/860

iris Silicon Graphics Iris

next040 NeXT

rs6000 IBM RS/6000

sun4 Sun 4 (SPARC based)

102

C Reserved Words

The following words may not be used as variable names or procedure names in PCN

programs.

append stream

char

close stream

data

decrement stream

default

directive

double

exports

foreign

init recv

init send

int

length

location

nodes

over

PCN

stream

stream send

stream recv

topology

tuple

p *

pdb *

PCN *

103

D Deprecated and Incompatible Features

1. Under v1.2.2, a common way to write a tuple that has a string in the �rst

element of the tuple as a label was to write it in pre�x notation, such as

label(a,b). This is equivalent to writing the tuple in the in�x notation,

f``label'',a,bg. However, in v2.0, writing tuples in this pre�x form is

discouraged because its syntax is identical to that of functions, which are now

supported in v2.0. Instead, it is recommended that you always write tuples

using in�x notation.

2. The sys:list length() procedure (which was undocumented under v1.2.2

but sometimes used) has had its argument order changed between v1.2.2 and

v2.0, in order to make it follow the convention used in all other libraries that

the return argument is always the last argument.

3. The stdio:scanf() procedure no longer supports %t for term scanning.

4. The -foreign() directive is ignored under v2.0. All information about which

foreign object �les and libraries to link must be speci�ed on the command line

when linking with pcncomp.

5. The PCN PATH environment variable is ignored under v2.0. Since .pam �les are

no longer loaded dynamically when they are �rst referenced, this is no longer

needed.

6. The sizeof() command has been changed to length(). It returns the number

of elements in an array, or the arity of a tuple. (This change occurred in v1.2.2.)

7. Meta operations now use `var` (matching back quotations) instead of 'var (un-

matched single quote) to denote a string that is to be interpreted as a variable

name. (This change occurred in v1.2.2.)

104

E Common Questions

What does it mean when PCN prints an Illegal tag message? This usu-

ally means that PCN internal data structure has been corrupted somehow. The

usual way in which this happens is that user code writes past the beginning or end

of an array (either in PCN or foreign code).

To help detect this situation: If you use arrays in your PCN code then you can

do bounds checking by running the program under pcn.pdb. If you use arrays in

Fortran code, many Fortran compilers have a ag to turn on bounds checking (also

known as range checking).

See x 14 for information on debugging PCN programs.

Why is the PCN linker so slow? See x 25 for information on how the linker

works. Also, see x 15.9 and x 26 for tips on reducing link times when debugging.

105

F PCN Syntax

The following syntactic conventions are employed in this expanded BNF:

nonterminal ::= production

[] Surround an optional element.

f g Surround an element that may occur zero or more times.

j Separates alternatives.

boldface Indicates reserved words.

\quotes" Indicate characters that appear literally.

The symbols unsigned-integer, unsigned-real, character-string, and identi�er denote

terminal symbols and are not de�ned further here.

Comments are delineated by the start-comment symbol /* and the end-comment

symbol */.

Compilation Module

compilation-module ::= program-or-directive f program-or-directive g

program-or-directive ::= program-declaration j directive

Directive

directive ::= \-" directive-name \(" directive-arguments \)"

directive-name ::= identi�er

directive-arguments ::= [directive-argument f \," directive-argument g]

directive-argument ::= term

Program Declaration

program-declaration ::= program-heading mutable-declarations program-body

program-heading ::= program-heading-modi�ers identi�er \(" formal-parameters \)"

program-heading-modi�ers::= [identi�er f \," identi�er g]

formal-parameters ::= [formal-parameter f \," formal-parameter g]

formal-parameter ::= identi�er

mutable-declarations ::= f mutable-type mutable-declaration-list \;" g

mutable-type ::= int j double j char j port

mutable-declaration-list ::= mutable-declaration f \," mutable-declaration g

106

mutable-declaration ::= identi�er [\[" [expression] \]"]

program-body ::= sequential-composition j

parallel-composition j

choice-composition

Block

block ::= assignment-statement j

de�nition-statement j

program-call j

sequential-composition j

parallel-composition j

choice-composition j

quanti�cation

assignment-statement ::= variable \:=" expression

de�nition-statement ::= variable \=" term

program-call ::= local-program-call j

remote-program-call j

remap-program-call j

meta-program-call

function-call ::= local-program-call j

remote-program-call

local-program-call ::= simple-program-call

remote-program-call ::= simple-program-call "@" simple-program-call

remap-program-call ::= simple-program-call in simple-program-call

meta-program-call ::= ` identi�er `

simple-program-call ::= program-speci�er \(" actual-parameters \)"

107

program-speci�er ::= [module-name \:"] program-name

module-name ::= quoted-identi�er

program-name ::= quoted-identi�er

actual-parameters ::= [actual-parameter f \," actual-parameter g]

actual-parameter ::= term

annotation ::= unsigned-integer j character-string j quoted-identi�er

quoted-identi�er ::= ` identi�er ` j identi�er

Note: The single backquote characters in the preceding line indicate literally that character.

Quanti�cation

quanti�cation::= identi�er over expression \.." expression \::" block

Sequential Composition

sequential-composition ::= \f" \;" block f \," block g \g"

Parallel Composition

parallel-composition ::= \f" \jj" block f \," block g \g"

Choice Composition

choice-composition ::= guarded-block j

\f" \?" guarded-block f \," guarded-block g \g"

guarded-block ::= guards ! block

guards ::= guard-list j default

guard-list ::= guard f conditional-and guard g

conditional-and ::= \,"

guard ::= pattern-match j equality-test j relational-test j data-test

108

pattern-match ::= identi�er \?=" pattern

pattern ::= tuple-pattern j list-pattern

tuple-pattern ::= \f" pattern-elements \g" j

identi�er \(" pattern-elements \)"

list-pattern ::= \[" pattern-elements \]" j

\[" pattern-element-list \j" pattern-element \]"

pattern-elements ::= [pattern-element-list]

pattern-element-list ::= pattern-element f \," pattern-element g

pattern-element ::= signed-number j character-string j identi�er j pattern

equality-test ::= equality-operand \==" equality-operand j

equality-operand \!=" equality-operand

equality-operand ::= expression j character-string j empty-tuple j empty-list

empty-tuple ::= \f" \g"

empty-list ::= \[" \]"

relational-test ::= relational-operand \<" relational-operand j

relational-operand \>" relational-operand j

relational-operand \<=" relational-operand j

relational-operand \>=" relational-operand

relational-operand ::= expression

data-test ::= int \(" term \)" j

double \(" term \)" j

char \(" term \)" j

tuple \(" term \)" j

data \(" term \)"

Variable

variable ::= identi�er [\[" index \]"]

index ::= unsigned-integer j identi�er

109

Expression

expression ::= adding-expression

adding-expression ::= multiplying-expression j

adding-expression \+" multiplying-expression j

adding-expression \�" multiplying-expression

multiplying-expression ::= primary-expression j

multiplying-expression *" primary-expression j

multiplying-expression \/" primary-expression j

multiplying-expression \%" primary-expression

primary-expression ::= signed-number j

variable j

length \(" identi�er \)" j

function-call j

\(" expression \)"

signed-number ::= ["�"] unsigned-integer j

["�"] unsigned-real

Term

term ::= expression j

character-string j

tuple-constructor j

list-constructor

tuple-constructor ::= \f" elements \g" j

identi�er \(" elements \)"

list-constructor ::= \[" elements \]" j

\[" element-list \j" element \]"

elements ::= [element-list]

element-list ::= element f \," element g

element ::= signed-number j character-string j variable j

tuple-constructor j list-constructor

110

Index

-dumpafter basic, 65

-foreign() directive, 104

-gauge, 73

-gauge �le, 73

-link all, 72

-load, 72

-metacalls() directive, 52

-mm, 7

-mp, 7

-nmp, 73

-no nmp, 73

-nodes, 91

-pdb, 66

-pro�le, 73, 77

-upshot, 78

-upshot �le, 78

-upshot log size, 78

.pam �le, 5

.pdbrc �le, 66

abs(), 81

access to PCN software, 101

access(), 84

aliasing of variables, 34

anonymous de�nitional variables, 15

applications of PCN, 95

argc, 7

arguments, 6

argv, 7

arithmetic expressions, 11

arrays, 11

associativity of operators, 12

auxiliary procedures, 63

barrier processes, 65

bitwise and(), 81

bitwise or(), 81

bitwise xor(), 81

block, 12

block of a procedure, 12

bounds checking, 61, 105

broadcast communication, 30

broadcasting with a distributor, 79

C, 11, see foreign language interface

C preprocessor, 2, 45

cell, 57

char() test, 17

character, see constants

data type, 11

choice composition, 1, 17, 36

execution order, 17

mechanism for choosing alternatives,

17

nondeterminism introduced with,

18

notation, 17

rules, 18

synchronization mechanism, 17

use, 19

circular reference checking, 61

code reuse, 1, 57{59

comments in PCN, 12

communication, 9, 10, 19, 26, 36

broadcast, 30

communications, 10

compiler, 5, 48, 49, 96

auxiliary procedures, 63

basic text for techniques, 95

toolkit overview, 2

composition, 1, 9, 10, 12

composition operators, 1, 13

basic, 1

choice, see choice composition

default, 13

parallel, see parallel composition

sequential, see sequential compo-

sition

user de�ned, 1

compositionality, 9, 36

concurrency, 9, 36, see parallelism

composition, 10

�rst-class, 9

programming concepts, 9

concurrent programming, see parallel

programming

111

conditional execution, 36

constants, 11

consumer, 9, 26

core PCN, 63

basic composition operators, 1

extensions, 1

features, 1

cpp, see C preprocessor

data types, 11

data() test, 17

debugging, 60{62, see PDB

command line arguments, 61

dynamic loading, see dynamic load-

ing

example Make�le, 98

foreign code, 98

of concurrent programs, 3

PDB, 63{73

performance errors, 61

run-time system debug levels, 99

declarations, 12, 13

default guard, 17, 20

de�nitional variable, 26

de�nitional variables, 2, 9, 10, 13{15,

34, 36

anonymous, 15

as communication channels, 19

bene�ts, 9

comparison with mutable, 16

example, 15

example use in quicksort, 39

interaction sequential code, 33

properties, 16

delimiters, 12

deprecated features, 104

determinism, see nondeterminism

di�erence list, 38, 39

distribute(), 79

distributor, 30

divide and conquer, 15

double

constants, see constants

data type, 11

double() test, 17

double cast(), 81

double to integer(), 80

double to list(), 80

double to string(), 80

dynamic loading, 61, 72

entry point, 7

errors

logical, 61

performance, 61

example program, 4

examples

height of a tree, 38

membership in a list, 37

membership in a list with muta-

bles, 37

preorder traversal of a tree, 38

quicksort, 39

reversal of a list, 37

two-point boundary value problem,

42

exit code, 7

exported procedure, 45

expressions, arithmetic, 11

fclose(), 82

fdopen(), 82

�ush(), 82

fgetc(), 83

fgets(), 83

�nd substring(), 81

�nd substring reverse(), 82

fopen(), 82

foreign language interface, 2, 47{50

Fortran, see foreign language interface

Fortran, with cpp directives, 49

fprintf(), 83

fputc(), 83

fputs(), 83

fread(), 84

freopen(), 82

fscanf(), 84

fseek(), 84

ftell(), 84

ftp, 101

112

functions, 12

further reading, 94

fwrite(), 84

Gauge, 73{76

basic text, 95

data exploration, 74

�nding performance errors, 61

host database, 75

invocation, 74

snapshots, 74

toolkit overview, 3

X resource �le, 76

gc after foreign, 61

getc(), 83

getchar(), 83

gets(), 83

global variables, 12

guard, 17

suspension, 17

hash(), 79

heap corruption checking, 61

higher-order programming, see meta-

calls

host-control, 4, 93, 94

illegal tag, 105

implication, 17, 18

incompatibilities, 104

incomplete message, 31

information functions, 52

installation of PCN, 4

int() test, 17

integer

constants, see constants

data type, 11

integer cast(), 81

integer to double(), 80

integer to list(), 80

integer to string(), 80

Intel iPSC/860 version, 88

intermodule call, 5, 45

iteration, see recursion

left shift(), 81

length(), 104

libraries, 79

input-output, 82

sys, 79

toolkit overview, 3

utilities, 79

lightweight threads, see threads

linker, 5, 49, 96

how it works, 96

integrating foreign code, 47

toolkit overview, 2

with PDB, 66

list concat(), 81

list length(), 81

incompatibility with previous re-

lease, 104

list member(), 81

list to double(), 80

list to integer(), 80

list to string(), 80

list to tuple(), 80

lists, 24{25

example of membership, 37

example transducer, 25

location functions, 53

location(), 52

LOG EVENT(), 77

LOG TASK EVENT(), 77

LOG TASK EVENT DATA(), 77

loops, see recursion

machines supporting PCN, 102

main() procedure, 7

Make�le example, 96

map functions, 54

mapping, see process mapping

mapping independence, 36

mapping processes, see process map-

ping

match, 17

match operator, 23

merger, 29

merger(), 79

metacalls, 50, 104

module, 5

113

modules, 45

multilingual programming, 50

mutable variables, 2, 13, 34, 36

comparison with de�nitional, 16

copying, 34

example use in quicksort, 40

interaction parallel code, 33

interaction with de�nitional vari-

ables, 34

use in parallel blocks, 34

nested blocks, tranformation, 63

net-PCN, 90, 94

-nodes, 91

heterogeneous networks, 93

limitations, 93

number of nodes, 93

startup �le examples, 92

startup �le method, 92

startup with host-control, 93

network version, see net-PCN

nodes(), 52

nondeterminism, 9{10, 36

controlled, 9

in reactive applications, 18

merger as source, 29

object code, PCN, 2, 5

ones complement(), 81

operators

associativity, 12

precedence, 12

orphan processes, 72

parallel and sequential code

interaction, 33

parallel composition, 1, 14, 36

role, 16

parallel computation

on a network, 60

on multicomputers, 59

on multiprocessors, 60

parallel programming, 9

path for Unix shell, 4

PCN PATH, deprecated use of, 104

pcncomp, see compiler

pcnt �les, 96

PDB, 61, 63{73, see debugging

$empty queue break, 70

$emulator dl, 70

$gc dl, 70

$global dl, 70

$parallel dl, 70

$print array size, 69

$print orphaned, 70

$print tuple depth, 69

$print tuple width, 70

$reduction dl, 70

abbreviation of commands, 67

abort command, 71

active queue, 67

break command, 69

breakpoints, 69

continue command, 71

debug command, 71

delete command, 69

disable command, 69

enable command, 69

global suspension queue, 67

help, 67

help command, 71

interrupting a program, 66

load command, 71, 72

modules command, 71

move command, 68

next command, 71

nodebug command, 71

orphan process check, 72

pending queue, 67

print command, 71

procedures command, 71

queue examination, 68

queue modi�cation, 68

queue types, 67

quit command, 71

show command, 68

source command, 71

status command, 69

summary command, 68

switch command, 69

toolkit overview, 3

114

variable suspension queue, 67

variables, 69

vars command, 71

performance error, 61

ports, 56

precedence of operators, 12

preprocessor, see C preprocessor

printf(), 83

procedures

components, 12

heading, 12

reserved names, 103

process mapping, 9, 52{55

process queues, see PDB

producer, 9, 26

pro�le snapshot(), 74

pro�ling, see Gauge

program composition, 1

ProgramTransformation Notation, see

PTN

PTN, basic text, 94

putc(), 83

putchar(), 83

puts(), 83

quanti�cation, 20, 53

queues, see PDB

quicksort example, 39

race condition avoidance, 34

range checking, see bounds checking

reactive applications, 10, 18

recursion, 20{22, 36

reduction

breaking to PDB at, 70

de�nition, 66

references, 94

remove(), 84

rename(), 85

reserved words, 103

reuse of code, see code reuse

rewind(), 84

right shift(), 81

rsh, 90

run-time system

basic text, 95

overview, 67

toolkit overview, 2

run-time system arguments, 7

running a program, 6

scanf(), 84

incompatibility with previous re-

lease, 104

search method in PCN, 32

send/receive, see stream

separators, 12

sequencing variables, 64

Sequent Symmetry, 90

sequential composition, 1, 13, 36

applications, 14

example, 14

role, 16

transformation, 63

single-assignament variables, see de�-

nitional variables

sizeof(), 104

snapshot pro�les, see Gauge

snapshotting, 34

software cell, see cell

sorting example, 39

sprintf(), 83

sscanf(), 84

state change, 10, 36

stderr(), 84

stdin(), 84

stdio, 82{88

stdout(), 84

stream, 26{29

advanced usage, 29{33

end, 26

exibility of, 28

implementation, 26

many-to-one communication, 29,

see merger

one-to-many communication, see

distributor

send/receive equivalents, 27

two-way communication, 31

string, 11

115

constants, see constants

creation with sprintf(), 86

string concat(), 81

string length(), 81

string list concat(), 81

string to double(), 80

string to integer(), 80

string to list(), 80

subscripts, 13

substring(), 82

suspension, 9, 10, 17

Symmetry, 90

synchronization, 9, 10, 17, 20, 36

syntax, 11{13

comments, 12

data types, 11

declarations, 13

error detection, 60

errors, see debugging

expanded BNF, 106

expressions, 11

functions, 12

procedures, 12

string, 11

variable names, 12

sys, 79

system utilities, 79

template, 1, 57

tests, 17

threads, 10

toolkit

components, 2

for program development, 1

topology(), 52

transformation

description, 63

obtaining code, 65

trees

example of �nding height, 38

example of traversing, 38

tuple() test, 17

tuple to list(), 80

tuples, 22{25, 36

comparison of, 24

deprecated use of, 104

list, 24

match operator, 17

type casting, 80, 81

unde�ned variable, 9, 15, 17

ungetc(), 83

uni�cation, 24

Upshot, 76{79

analyzing a log, 78

collecting a log, 78

�nding performance errors, 62

instrumenting a program, 77

merging logs, 78

toolkit overview, 3

variable types, 2

variables

debugger, 69

de�nitional, see de�nitional vari-

ables

global, see global variables

mutable, see mutable variables

names, 12

reserved words, 103

virtual topologies, 3, 54

warning messages, 60

wildcards, 65

wrapper procedures, 63

X resource �le, 76

116

